Skip to main content

Advertisement

Log in

Pathogenesis and treatment of peritoneal membrane failure

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Peritoneal dialysis (PD) is a viable treatment option for end stage renal disease (ESRD) patients worldwide. PD may provide a survival advantages over hemodialysis (HD) in the early years of treatment. However, the benefits of PD are short-lived, as peritoneal membrane failure ensues in many patients, owing mainly to structural and functional changes in the peritoneal membrane from the use of conventional bio-incompatible PD solutions, which are hyperosmolar, acidic, have lactate buffer and contain high concentrations of glucose and glucose degradation products (GDPs). Current data suggest that chronic exposure of the peritoneum to contemporary PD fluids provokes activation of various inflammatory, fibrogenic and angiogenic cytokines, interplay of which leads to progressive peritoneal fibrosis, vasculopathy and neoangiogenesis. There is emerging evidence that peritoneal vascular changes are mainly responsible for increased solute transport and ultrafiltration failure in long-term PD. However, the precise pathophysiologic mechanisms initiating and propagating peritoneal fibrosis and angiogenesis remain elusive. The protection of the peritoneal membrane from long-term toxic and metabolic effects of high GDP-containing, conventional, glucose-based solutions is a prime objective to improve PD outcome. Recent development of new, more biocompatible, PD solutions should help to preserve peritoneal membrane function, promote ultrafiltration, improve nutritional status and, hopefully, preserve peritoneal membrane and improve overall PD outcomes. Elucidation of molecular mechanisms involved in the cellular responses leading to peritoneal fibrosis and angiogenesis spurs new therapeutic strategies that might protect the peritoneal membrane against the consequences of longstanding PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander SR, Warady BA (2004) The demographics of dialysis in children. In: Warady BA, Schaefer F, Fine RN, Alexander S (eds) Pediatric dialysis. Kluwer, Dordrecht, The Netherlands, pp 35–45

    Chapter  Google Scholar 

  2. Vonesh EF, Snyder JJ, Foley RN, Collins AJ (2006) Mortality studies comparing peritoneal dialysis and hemodialysis: what do they tell us? Kidney Int 70 [Suppl 103]:S3–S11

    Article  Google Scholar 

  3. Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T (1997) Issues affecting the longevity of continuous ambulatory peritoneal dialysis. Kidney Int 52 [Suppl 62]:S105–S107

    Google Scholar 

  4. Schaefer F, Klaus G, Muller-Wiefel DE, Mehls O; Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS) (1999) Current practice of peritoneal dialysis in children: results of a longitudinal survey. Perit Dial Int 19 [Suppl 2]:S445–S449

    Article  PubMed  Google Scholar 

  5. Andreoli SP, Langefeld CD, Stadler S, Smith P, Stars A, West K (1993) Risks of peritoneal membrane failure in children undergoing long-term peritoneal dialysis. Pediatr Nephrol 7:543–547

    Article  CAS  PubMed  Google Scholar 

  6. Davies S, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI (1998) What really happens to people on long-term peritoneal dialysis? Kidney Int 54:2207–2217

    Article  CAS  PubMed  Google Scholar 

  7. Nagy JA (1996) Peritoneal morphology and function. Kidney Int 50 [Suppl 56]:S2–S11

    Google Scholar 

  8. Fischbach M, Haraldsson B, Helms P, Danner S, Laugel V, Terzic J (2003) The peritoneal membrane: a dynamic dialysis membrane in children. Adv Perit Dial 19:265–268

    PubMed  Google Scholar 

  9. Dobbie JW (1990) New concepts in molecular biology and ultrastructural pathology of the peritoneum: their significance for peritoneal dialysis. Am J Kidney Dis 15:97–109

    Article  CAS  PubMed  Google Scholar 

  10. Williams JD, Craig KJ, Ruhland CV, Topley N, Williams GT (2003) The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int 64 [Suppl 88]:S43–S49

    Article  Google Scholar 

  11. Krediet R (1999) The peritoneal membrane in chronic peritoneal dialysis. Kidney Int 55:341–356

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Cabrera M, Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-Lozano ML, Jimemez-Heffernan JA, Bajo MA, del Peso G, Sanches-Tomero JA, Selgas R (2006) Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. Perit Dial Int 26:26–34

    Article  CAS  PubMed  Google Scholar 

  13. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jiménez-Heffernan AJ, Aguilera A, Sánchez-Tomero AJ, Bajo MA, Álvarez V, Castro AM, del Peso G, Cirujeda A, Gmallo C, Sanchez-Madrid F, Lopez-Cabrera M (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Eng J Med 348:403–413

    Article  Google Scholar 

  14. Davies S, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI (1998) What really happens to people on long-term peritoneal dialysis? Kidney Int 54:2207–2217

    Article  CAS  PubMed  Google Scholar 

  15. Wardy BA, Fiyush B, Andreoli S, Kohaut E, Salusky I, Schlichting L, Pu K, Watkins S (1999) Longitudinal evaluation of transport kinetics in children receiving peritoneal dialysis. Pediatr Nephrol 13:571–576

    Article  Google Scholar 

  16. Davies S, Bryan J, Phillips L, Russell GI (1996) Longitudinal changes in peritoneal kinetics: the effect of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 11:498–506

    Article  CAS  PubMed  Google Scholar 

  17. Flessner MF (2005) The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol 288:F433–F442

    Article  CAS  PubMed  Google Scholar 

  18. Brimble KS, Walker M, Margetts PJ, Kundhal KK, Rabbat CG (2006) Meta-analysis: peritoneal membrane transport, mortality and technique failure in peritoneal dialysis. J Am Soc Nephrol 17:2591–2598

    Article  PubMed  Google Scholar 

  19. Wang T, Hrimburger O, Waniewski J, Bergstrom J, Lindholm B (1998) Increased peritoneal permeability is associated with decreased fluid and small solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 13:1242–1249

    Article  CAS  PubMed  Google Scholar 

  20. Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Page D (1998) Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. J Am Soc Nephrol 9:1285–1292

    Article  CAS  PubMed  Google Scholar 

  21. Margetts PJ, Oh K-H, Kulb M (2004) Transforming growth factor β. Importance in long-term peritoneal membrane changes. Perit Dial Int 25 [Suppl 3]:S15–S17

    Google Scholar 

  22. Margetts PJ, Bonniaud P (2003) Basic mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int 23:530–541

    Article  CAS  PubMed  Google Scholar 

  23. Combet S, Miyata T, Moulin P, Pouthier D, Goffin R, Devuyst O (2000) Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11:717–728

    Article  CAS  PubMed  Google Scholar 

  24. Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT (1999) Growth factors VEGF and TGF-beta1 in peritoneal dialysis. J Lab Clin Med 134:124–132

    Article  CAS  PubMed  Google Scholar 

  25. Noh H, Ha H, Yu MR, Kim YO, Kim HJ, Lee HB (2005) Angiotensin II mediated high glucose induced TGF β1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit Dial Int 25:38–47

    Article  CAS  PubMed  Google Scholar 

  26. Rizkalla B, Forbes JM, Cooper ME, Cao Z (2002) Increased renal vascular endothelial growth factor and angiopoetins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol 14:3061–3071

    Article  CAS  Google Scholar 

  27. Sauter M, Cohen CD, Wornle M, Mussack T, Ladurner R, Sitter T (2007) ACE inhibitor and AT-1 receptor blocker attenuate the production of VEGF in mesothelial cells. Perit Dial Int 27:167–172

    Article  CAS  PubMed  Google Scholar 

  28. Fritsch S, Lindner V, Welsch S, Massfelder T, Grima M, Rothhut S, Barthelmebs M, Helwig J-J (2004) Intravenous delivery of PTH/PTHrP type 1 receptor cDNA to rats decreases heart rate, blood pressure, renal tone, renin angiotensin system, and stress-induced cardiovascular responses. J Am Soc Nephrol 13:2588–2600

    Article  CAS  Google Scholar 

  29. Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlitter K-D, Silve C, Stewart AF, Takane K, Helwig J-J (2001) Parathyroid hormone related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 134:1113–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J 10:2247–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alhamdani MS (2005) Impairment of glutathione biosynthetic pathway in uremia and dialysis. Nephrol Dial Transplant 20:124–128, 2005

    Article  CAS  PubMed  Google Scholar 

  32. Fabbrini P, Zareie M, ter Wee PM, Keuning ED, Beelen RHJ, van den Born J (2006) Peritoneal exposure model in the rat as a tool to unravel bio(in)compatibility of PDF. Nephrol Dial Transplant 21 [Suppl 2]:8–11

    Article  CAS  Google Scholar 

  33. Cueto-Manzano AM, Rojas-Campos E, Martinez-Ramirez HR, Valera-Gonzalez I, Medina M, Montenon F, Ruiz N, Becerra M, Palomeque MA, Cortes-Sanabria L (2005) Can the inflammation markers of patients with high peritoneal permeability on continuous ambulatory peritoneal dialysis be reduced on nocturnal intermittent peritoneal dialysis? Perit Dial Int 26:341–348

    Article  Google Scholar 

  34. Garosi G, Paolo ND (2000) Peritoneal sclerosis: one or two nosological entities? Semin Dial 13:297–308

    Article  CAS  PubMed  Google Scholar 

  35. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, Wrege U, Gröntoft K-C, Larsson R, Berglund J, Tranæus AP, Faict D (1998) Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 53:1061–1067

    Article  CAS  PubMed  Google Scholar 

  36. Topley N (1997) In vitro biocompatibility of bicarbonate-based peritoneal dialysis solutions. Perit Dial Int 17:42–47

    CAS  PubMed  Google Scholar 

  37. Wong TY, Philips AO, Witowski J, Topley N (2003) Glucose mediated induction of TGF β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney Int 63:1404–1416

    Article  CAS  PubMed  Google Scholar 

  38. De Vriese AS, Mortier S, Lameire NH (2001) What happens to the peritoneal membrane in long-term peritoneal dialysis? Perit Dial Int 21 [Suppl 3]:S9–S18

    Article  PubMed  Google Scholar 

  39. Vardhan A, Zweers MM, Gokal R, Kreidet RT (2003) A solutions portfolio approach in peritoneal dialysis. Kidney Int 64 [Suppl 88]:S114–S123

    Article  Google Scholar 

  40. Witowski J, Wisniewska J, Korybalska K, Bender TO, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2001) Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol 12:2434–2441

    Article  CAS  PubMed  Google Scholar 

  41. Linden T, Cohen A, Deppisch R, Kjellstrand P, Wieslander A (2002) 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 62:697–703

    Article  CAS  PubMed  Google Scholar 

  42. Miyata T, Devuyst O, Kurokawa K, van Ypersele de Strihou C (2002) Towards better dialysis compatibility: advances in the biochemistry and pathophysiology of the peritoneal membranes. Kidney Int 61:375–386

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura S, Tachikawa T, Tobita K, Miyazaki S, Sakai S, Morita T, Hirasawa Y, Weigle B, Pischetsrieder M, Niwa T (2003) Role of advanced glycation end products and growth factors in peritoneal dysfunction. Am J Kidney Dis 41 [Suppl 1]:S61–S67

    Article  CAS  PubMed  Google Scholar 

  44. Nishida Y, Shao JC, Kiribayashi K, Nakamura C, Yorioka N (1998) Advanced glycation end products reduce the viability of human peritoneal mesothelial cells. Nephron 80:477–478

    Article  CAS  PubMed  Google Scholar 

  45. Boulanger E, Wautier MP, Wutier JL, Boval B, Panis Y, Wernert N, Danze P-M, Dequiedt P (2002) AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. Kidney Int 61:148–156

    Article  CAS  PubMed  Google Scholar 

  46. de Boer AW, Schroder CH, van Vliet R, Willems JL, Monnens LA (2000) Clinical experience with icodextrin in children: ultrafiltration profiles and metabolism. Pediatr Nephrol 15:21–24

    Article  PubMed  Google Scholar 

  47. Michallat AC, Dheu C, Loichot C, Danner S, Fischbach M (2005) Long daytime exchange in children on continuous cycling peritoneal dialysis: preservation of drained volume because of icodextrin use. Adv Perit Dial 21:195–199

    CAS  PubMed  Google Scholar 

  48. Dart A, Feber J, Wong H, Filler G (2005) Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol 20:683–685

    Article  PubMed  Google Scholar 

  49. Wolfson M, Ogrinc F, Mujais S (2002) Review of clinical trial experience with icodextrin. Kidney Int 62 [Suppl 81]:S46–S52

    Article  Google Scholar 

  50. Ha H, Cha MK, Choi HN, Lee HB (2002) Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Perit Dial Int 22:171–177

    Article  CAS  PubMed  Google Scholar 

  51. Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, Macnamara E, Ekstrand A, Tranaeus A, Divino JC (2005) Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 67:1609–1615

    Article  CAS  PubMed  Google Scholar 

  52. Canepa A, Perfumo F, Carrea A, Menoni S, Verrina E, Trivelli A, Delucchi P, Gusmano R (1996) Protein and calorie intake, nitrogen losses and nitrogen balance in children undergoing chronic peritoneal dialysis. Adv Perit Dial 12:326–329

    CAS  PubMed  Google Scholar 

  53. Young GA, Kopple JD, Lindholm B, Vonesh EF, De Vecchi A, Scalamogna A, Castelnova C, Oreopoulos DG, Anderson GH, Bergstrom J (1991) Nutritional assessment of continuous ambulatory peritoneal dialysis. An international study. Am J Kidney Dis 17:462–471

    Article  CAS  PubMed  Google Scholar 

  54. Canepa A, Verrina E, Perfumo F, Carrea A, Menoni S, Delucchi P, Gusmano R (1999) Value of intraperitoneal amino acids in children treated with chronic peritoneal dialysis. Perit Dial Int 19 [Suppl 2]:S435–S440

    Article  PubMed  Google Scholar 

  55. Park MS, Choi SR, Song YS, Yoon SY, Lee SY, Han DS (2006) New insight of amino-acid based dialysis solutions. Kidney Int 70 [Suppl 103]:S110–S114

    Article  CAS  Google Scholar 

  56. Zareie M, van Lambalgen AA, ter Wee PM, Hekking LH, Kauning ED, Schadee-Eesrermans IL, Faict D, Degreve B, Tangelder GJ, Beelen RHJ, van den Born J (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25:58–67

    Article  CAS  PubMed  Google Scholar 

  57. Van Biesen W, Boer W, De Greeve B, Dequidt C, Vijt D, Faict D, Lameire N (2004) A randomized clinical trial with a 0.6% amino acid/1.4% glycerol peritoneal dialysis solution. Perit Dial Int 24:222–230

    Article  PubMed  Google Scholar 

  58. Erixon M, Wieslander A, Linden T, Carlsson O, Forshback G, Svensson E, Jonsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26:490–497

    Article  CAS  PubMed  Google Scholar 

  59. Hoff CM (2003) In vitro biocompatibility performance of Physioneal. Kidney Int 64 [Suppl 88]:S57–S74

    Article  Google Scholar 

  60. Pecoits-Filho R, Tranaeus A, Lindholm B (2003) Clinical trial experiences with Physioneal. Kidney Int 64 [Suppl 88]:S100–S104

    Article  Google Scholar 

  61. Williams J, Topley N, Craig K, Mackenzie R, Pischertsrieder M, Lage C, Passilick-Deetjen J (2004) The Euro-Balance Trial. The effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66:408–418

    Article  PubMed  Google Scholar 

  62. Lee H, Park H, Seo B, Do J, Yun S, Song H, Kim Y, Kim Y, Kim D, Kim Y, Ahn C, Kim M, Shin S (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation products concentration (balance). Perit Dial Int 25:248–255

    Article  PubMed  Google Scholar 

  63. Lee H, Choi H, Park H, Seo B, Do J, Yun S, Song H, Kim Y, Kim Y, Kim D, Kim Y, Kim M, Shin S (2006) Changing prescribing practice in CAPD patients in Korea. Increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21:2893–2899

    Article  CAS  PubMed  Google Scholar 

  64. Montenegro J, Saracho R, Gallardo I, Martinez I, Munoz R, Quintanilla N (2007) Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol Dial Transplant 22:1703–1708

    Article  CAS  PubMed  Google Scholar 

  65. Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper A-K, Schaefer F; Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS) (2007) Reduced systemic advanced glycation endproducts in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant 22:2038–2044

    Article  CAS  Google Scholar 

  66. Fischbach M, Terzic J, Chauve S, Laugel V, Muller A, Haraldsson B (2004) Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant 19:925–932

    Article  CAS  PubMed  Google Scholar 

  67. Haas S, Schmitt CP, Arbeiter K, Bonzel K-E, Fischbach M, John U, Pieper A-K, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F; Mid European Pediatric Peritoneal Dialysis Study Group (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14:2632–2638

    Article  PubMed  Google Scholar 

  68. le Poole CY, van Ittersum FJ, Weijmer MC, Valenttijn RM, ter Wee PM (2004) Clinical effects of a peritoneal dialysis regimen low in glucose in new peritoneal dialysis patients: a randomized crossover study. Adv Perit Dial 20:170–176

    PubMed  Google Scholar 

  69. le Poole CY, Welten AG, Weijmer MC, Valenttijn RM, van Ittersum FJ, ter Wee PM (2005) Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 25 [Suppl 3]:S64–S68

    Article  PubMed  Google Scholar 

  70. Miyata T, Kurokawa K, van Ypersele De Strihou C (2000) Advanced glycation and lipidoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 11:1744–1752

    Article  CAS  PubMed  Google Scholar 

  71. Hobbs AJ, Higgs A, Noncada S (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Ann Rev Pharmacol Toxicol 39:191–220

    Article  CAS  Google Scholar 

  72. De Vriese AS, Tilton RG, Seephan CC, Lameire N (2001) Diabetes-induced microvascular proliferation and hyperpermeability in the peritoneum: role of vascular endothelial growth factor. J Am Soc Nephrol 12:1734–1741

    Article  PubMed  Google Scholar 

  73. Miyazaki M, Obata Y, Abe K, Furusu A, Koji T, Tabata Y, Kohno S (2006) Technological advances in peritoneal dialysis. Gene transfer using nonviral delivery system. Perit Dial Int 26:633–640

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, R. Pathogenesis and treatment of peritoneal membrane failure. Pediatr Nephrol 23, 695–703 (2008). https://doi.org/10.1007/s00467-007-0580-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0580-5

Keywords

Navigation