Skip to main content

Advertisement

Log in

Peritoneal microvascular endothelial function and the microinflammatory state are associated with baseline peritoneal transport characteristics in uremic patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To investigate microvessel density (MVD), vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and interleukin-6 (IL-6) mRNA expression in peritoneal tissues, and their relationships with baseline peritoneal transport in uremia.

Methods

Thirty uremic patients with a peritoneal dialysis catheter were selected in the Department of Nephrology in Dalian Central Hospital, Liaoning, China between 2010 and 2012. Peritoneal specimens were harvested for assessment of MVD, VEGF, eNOS, and IL-6 mRNA expression. One month after continuous ambulatory peritoneal dialysis, a peritoneal equilibration test was conducted. According to the 4-h peritoneal dialysate and plasma creatinine ratio (D/P Cr), patients were divided into high (n = 16) and low (n = 14) transport groups.

Results

General clinical data of high and low transport groups were similar (P > 0.05). The MVD in peritoneal tissues was significantly higher in the high than in the low transport group (P < 0.05). Correspondingly, VEGF (P < 0.01), eNOS (P < 0.01), and IL-6 (P < 0.05) mRNA expression levels were significantly higher in the high as compared the low transport groups. Correlation analysis showed that the baseline D/P Cr was positively correlated with MVD and VEGF, eNOS, and IL-6 mRNA expression levels in the peritoneum (r = 0.506, 0.646, 0.638, and 0.686, respectively; P < 0.01).

Conclusions

Uremic patients display differences in peritoneal microvascular endothelial function and microinflammatory states before peritoneal dialysis. Patients of the high transport group have higher MVD, increased expression of endothelial function markers (VEGF and eNOS), and the microinflammatory marker (IL-6). These observations are closely related to high baseline peritoneal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Page D (1998) Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 9:1285–1292

    CAS  PubMed  Google Scholar 

  2. Flessner MF (1996) Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 7:225–233

    CAS  PubMed  Google Scholar 

  3. Goligorsky MS (2005) Endothelial cell dysfunction: can’t live with it, how to live without it. Am J Physiol Renal Physiol 288:F871–F880. doi:10.1152/ajprenal.00333.2004

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues AS, Almeida M, Fonseca I, Martins M, Carvalho MJ, Silva F, Correia C, Santos MJ, Cabrita A (2006) Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation. Nephrol Dial Transplant 21:763–769. doi:10.1093/ndt/gfi245

    Article  PubMed  Google Scholar 

  5. Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, Castro e Melo J, Krediet RT (2007) Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol 27:84–91. doi:10.1159/000099332

    Article  CAS  PubMed  Google Scholar 

  6. Margetts PJ, McMullin JP, Rabbat CG, Churchill DN (2000) Peritoneal membrane transport and hypoalbuminemia: cause or effect? Perit Dial Int 20:14–18

    CAS  PubMed  Google Scholar 

  7. Oh KH, Jung JY, Yoon MO, Song A, Lee H, Ro H, Hwang YH, Kim DK, Margetts P, Ahn C (2010) Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol Dial Transplant 25:1639–1646. doi:10.1093/ndt/gfp670

    Article  CAS  PubMed  Google Scholar 

  8. Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, Kim Y, Ahn C, Oh KH (2009) Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 29:81–88

    CAS  PubMed  Google Scholar 

  9. Wong TY, Szeto CC, Szeto CY, Lai KB, Chow KM, Li PK (2003) Association of ENOS polymorphism with basal peritoneal membrane function in uremic patients. Am J Kidney Dis 42:781–786

    Article  CAS  PubMed  Google Scholar 

  10. Zhang AH, Wang G, Zhang DL, Zhang QD, Liu S, Liao Y, Yin Y, Liu WH (2012) Association between VEGF receptors and baseline peritoneal transport status in new peritoneal dialysis patients. Ren Fail 34:582–589. doi:10.3109/0886022x.2012.669322

    Article  CAS  PubMed  Google Scholar 

  11. Gillerot G, Debaix H, Devuyst O (2004) Genotyping: a new application for the spent dialysate in peritoneal dialysis. Nephrol Dial Transplant 19:1298–1301. doi:10.1093/ndt/gfh017

    Article  CAS  PubMed  Google Scholar 

  12. Rumpsfeld M, McDonald SP, Purdie DM, Collins J, Johnson DW (2004) Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am J Kidney Dis 43:492–501

    Article  PubMed  Google Scholar 

  13. Zhang AHFLWG (2010) Association between pre-dialysis peritoneal microvascular density and baseline peritoneal solute transport status. Chin J Blood Purif 10:554–557

    Google Scholar 

  14. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O (2000) Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11:717–728

    CAS  PubMed  Google Scholar 

  15. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH, Jeon JS, Ha H, Lee HB (2006) Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 69:2022–2028. doi:10.1038/sj.ki.5001506

    Article  CAS  PubMed  Google Scholar 

  16. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Cabrera M, Aguilera A, Aroeira LS, Ramirez-Huesca M, Perez-Lozano ML, Jimenez-Heffernan JA, Bajo MA, del Peso G, Sanchez-Tomero JA, Selgas R (2006) Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. Perit Dial Int 26:26–34

    CAS  PubMed  Google Scholar 

  18. Ku DD, Zaleski JK, Liu S, Brock TA (1993) Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265:H586–H592

    CAS  PubMed  Google Scholar 

  19. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH (2001) Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12:993–1000

    PubMed  Google Scholar 

  20. Io H, Hamada C, Ro Y, Ito Y, Hirahara I, Tomino Y (2004) Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int 65:1927–1936. doi:10.1111/j.1523-1755.2004.00599.x

    Article  CAS  PubMed  Google Scholar 

  21. Ni J, McLoughlin RM, Brodovitch A, Moulin P, Brouckaert P, Casadei B, Feron O, Topley N, Balligand JL, Devuyst O (2010) Nitric oxide synthase isoforms play distinct roles during acute peritonitis. Nephrol Dial Transplant 25:86–96. doi:10.1093/ndt/gfp415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kubes P (1995) Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 2:235–244

    Article  CAS  PubMed  Google Scholar 

  23. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139. doi:10.1172/jci119868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT (1999) Growth factors VEGF and TGF-beta1 in peritoneal dialysis. J Lab Clin Med 134:124–132

    Article  CAS  PubMed  Google Scholar 

  25. Zareie M, De Vriese AS, Hekking LH, ter Wee PM, Schalkwijk CG, Driesprong BA, Schadee-Eestermans IL, Beelen RH, Lameire N, van den Born J (2005) Immunopathological changes in a uraemic rat model for peritoneal dialysis. Nephrol Dial Transplant 20:1350–1361. doi:10.1093/ndt/gfh835

    Article  CAS  PubMed  Google Scholar 

  26. Pecoits-Filho R, Araujo MR, Lindholm B, Stenvinkel P, Abensur H, Romao JE Jr, Marcondes M, De Oliveira AH, Noronha IL (2002) Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 17:1480–1486

    Article  CAS  PubMed  Google Scholar 

  27. Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL (1999) Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol 277:L1057–L1065

    CAS  PubMed  Google Scholar 

  28. Naka T, Nishimoto N, Kishimoto T (2002) The paradigm of IL-6: from basic science to medicine. Arthritis Res 4(Suppl 3):S233–S242

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen WV, Tintillier M, Stenvinkel P, Heimburger O, Lindholm B, Nordfors L, Robert A, Devuyst O (2005) Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 67:2477–2487. doi:10.1111/j.1523-1755.2005.00357.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the project of Dalian Health Committee of the Liaoning Province (2011).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanbo Teng.

Additional information

Lanbo Teng and Ming Chang are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, L., Chang, M., Liu, S. et al. Peritoneal microvascular endothelial function and the microinflammatory state are associated with baseline peritoneal transport characteristics in uremic patients. Int Urol Nephrol 47, 191–199 (2015). https://doi.org/10.1007/s11255-014-0775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0775-1

Keywords

Navigation