Skip to main content
Log in

A machine-learning enabled digital-twin framework for the rapid design of satellite constellations for “Planet-X”

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Worldwide communication bandwidth growth has largely been driven by (1) multimedia demands, (2) multicommunication-point demands and (3) multicommunication-rate demands, and has increased dramatically over the last two decades due to e-commerce, internet communication and the explosion of cell-phone use, in particular for in-flight services, all of which necessitate broadband use and low latency. In order to accommodate this huge surge in demand, next generation “mega-constellations” of satellites are being proposed combining a mix of heterogeneous unit types in LEO, MEO and GEO orbital shells, in order to provide continuous lower-latency and high-bandwidth service which exploits a wide-range of frequencies for fast internet connections (broadband, which is not possible with single satellite-type orbital shell systems). Accordingly, in this work, we develop a computationally-efficient digital-twin framework for a constellation of satellites around an arbitrary planet (“Planet-X”). The rapid speed of these simulations enables the ability to explore satellite infrastructure parameter combinations, represented by a multicomponent satellite constellation design vector \(\varvec{\Lambda }{\mathop {=}\limits ^\textrm{def}}\) (number of satellites, satellite orbital radii, satellite orbital speeds, satellite types), that can deliver desired communication signal or camera coverage on “Planet-X", while simultaneously incorporating satellite infrastructural resource constraints. In order to cast the objective mathematically, we set up the system design as an inverse problem to minimize a cost function via a Genetic Machine Learning Algorithm (G-MLA), which is well-suited for nonconvex optimization. Numerical examples are provided to illustrate the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. From this, one can ascertain the “escape” velocity for a non-propelled object to escape gravitational pull by setting the second-state velocity to be zero and the radius to be infinity:

    $$\begin{aligned} \underbrace{\left( \frac{1}{2}m\varvec{v}^e \cdot \varvec{v}^e-\frac{GM_{px}m}{r_{px}}\right) }_{launch}=\underbrace{0+0}_{{\textit{second state}}}\Rightarrow v^e=\left( \frac{2GM_{px}}{r_{px}}\right) ^{1/2}.\nonumber \\ \end{aligned}$$
    (7.30)

    With Earth’s parameters, \(M_{px}=M_e\) and \(r_{px}=r_e\), this corresponds to \(v^e \approx 11{,}200\) m/s.

References

  1. Walker JG (1982) Comments on Rosette constellations of earth satellites. IEEE Trans Aerosp Electron Syst 18(4):723–724

    Article  Google Scholar 

  2. Walker JG (1984) Satellite constellations. J Br Interplanet Soc 37:559–571

    Google Scholar 

  3. Curzi G, Modenini D, Tortora P (2020) Large constellations of small satellites: a survey of near future challenges and missions. Aerospace 7:133. https://doi.org/10.3390/aerospace7090133

    Article  Google Scholar 

  4. Ballard AH (1980) Rosette constellations of earth satellites. IEEE Trans Aerosp Electron Syst 16(5)

  5. del Portillo I, Cameron BG, Crawley EF (2019) A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica 159:123–135. Bibcode:2019AcAau.159..123D. https://doi.org/10.1016/j.actaastro.2019.03.040. hdl:1721.1/135044.2. ISSN 0094-5765. S2CID 115993580

  6. Bhattacherjee D, Singla A(2019) Network topology design at 27,000 km/hour. In: Proceedings of the 15th international conference on emerging networking experiments and technologies. CoNEXT’19. Association for Computing Machinery, Orlando, pp 341–354. https://doi.org/10.1145/3359989.3365407. ISBN 978-1-4503-6998-5. S2CID 208946393

  7. Bhattacherjee D, Aqeel W, Bozkurt IN, Aguirre A, Chandrasekaran B, Godfrey PB, Laughlin G, Maggs B, Singla A (2018) Gearing up for the 21st century space race. In: Proceedings of the 17th ACM workshop on hot topics in networks. HotNets’18. Association for Computing Machinery, Redmond, pp 113–119. https://doi.org/10.1145/3286062.3286079. ISBN 978-1-4503-6120-0

  8. Handley M (2018) Delay is not an option. In: Proceedings of the 17th ACM workshop on hot topics in networks. HotNets’18. Association for Computing Machinery, Redmond, pp 85–91. https://doi.org/10.1145/3286062.3286075. ISBN 978-1-4503-6120-0. S2CID 53284161

  9. Handley M (2019) Using ground relays for low-latency wide-area routing in megaconstellations. In: Proceedings of the 18th ACM workshop on hot topics in networks. HotNets’19. Association for Computing Machinery, Princeton, pp 125–132. https://doi.org/10.1145/3365609.3365859. ISBN 978-1-4503-7020-2. S2CID 207960066

  10. Hainaut OR, Williams AP (2020) Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. Astron Astrophys 636:A121. arXiv:2003.01992. Bibcode:2020A &A...636A.121H. https://doi.org/10.1051/0004-6361/202037501. ISSN 0004-6361. Retrieved 22 November 2020

  11. Mroz P, Otarola A, Prince TA, Dekany R, Duev DA, Graham MJ, Groom SL, Masci FJ, Medford MS (2022) Impact of the SpaceX Starlink satellites on the zwicky transient facility survey observations. Astrophys J Lett. 924(2): L30. arXiv:2201.05343. Bibcode:2022ApJ...924L..30M. https://doi.org/10.3847/2041-8213/ac470a. ISSN 2041-8205

  12. Lawrence A, Rawls ML, Jah M, Boley A, Di Vruno F, Garrington S, Kramer M, Lawler S, Lowenthal J, McDowell J, McCaughrean M (2022) The case for space environmentalism. Nat Astron 6(4):428–435. arXiv:2204.10025. Bibcode:2022NatAs...6..428L. https://doi.org/10.1038/s41550-022-01655-6. ISSN 2397-3366. S2CID 248300127

  13. Stahl HP (2019) Multivariable parametric cost model for ground and space telescope assemblies. Bull AAS 51(7). https://baas.aas.org/pub/2020n7i143

  14. Lal B, de la Rosa EB, Behrens J, Corbin B, Green EK, Picard AAJ, Balakrishnan A (2017) Global trends in small satellites. IDA Science and Technology Policy Institute, Alexandria

    Google Scholar 

  15. Sandaua R, Briess K, D’Errico M (2010) Small satellites for global coverage: potential and limits. ISPRS J Photogramm Remote Sens 65:492–504

    Article  Google Scholar 

  16. Panga WJ, Bo B, Meng X, Yu XZ, Guo J, Zhou J (2016) Boom of the CubeSat: a statistic survey of CubeSats launch in 2003–2015. In: Proceedings of the 67th international astronautical congress (IAC), Guadalajara, Mexico, 26–30 September 2016

  17. Muelhaupt TJ, Sorge ME, Morin J, Wilson RS (2019) Space traffic management in the new space era. J Space Saf Eng 85:51–60. Aerospace 2020, 7, 133 12 of 18

  18. Selva D, Golkar A, Korobova O, Cruz IL, Collopy P, de Weck OL (2017) Distributed earth satellite systems: what is needed to move forward? J Aerosp Inf Syst 14:412–438

    Google Scholar 

  19. Lim J, Klein R, Thatcher J (2005) Good technology, bad management: a case study of the satellite phone industry. J Inf Technol Manag 16:48–55

    Google Scholar 

  20. Eilerten B, Krynitz M, Olafsson K (2016) New Space-Forcing a rethink of ground networks. In: Proceedings of the 14th international conference on space operations, Daejeon, Korea, 16–20 May 2016, p 2599

  21. Monteverde J, Bullock M, Schulz K-J (2019) Operations Innovation. In: Proceedings of the Industry Workshop, ESA-ESOC, Darmstadt, Germany, 17–18 January 2019

  22. Babrinsky N (2019) mission operations ground segments space safety. In: Proceedings of the industry workshop, ESA-ESOC, Darmstadt, Germany, 17–18 January 2019

  23. Smith D, Hendrickson R (1995) Mission control for the 48-Satellite Globalstar constellation. In: Proceedings of the MILCOM’95 IEEE, San Diego, CA, USA, 5–8 November 1995, vol 2, pp 828–832

  24. Howard J, Oza D, Danford SS (2006) Best practices for operations of satellite constellations. In: Proceedings of the 9th international conference on space operations, Rome, Italy, 19–24 June 2006

  25. Robert RA, Ryan HT, John ML (2001) Distributed satellite constellation planning and scheduling. In: Proceedings of the FLAIRS conference AAAI, Key West, FL, USA, 21–23 May 2001, pp 68–72

  26. Abramson M, Carter D, Kolitz S, Ricard M, Scheidler P (2002) Real-time optimized earth observation autonomous planning. In: Proceedings of the NASA earth science technology conference, Houston, TX, USA, 9–12 October 2002, pp 68–72

  27. Jakob P, Shimizu S, Yoshikawa S, Ho K (2019) Optimal satellite constellation spare strategy using multi-echelon inventory control. J Spacecr Rocket 56:1449–1461

    Article  Google Scholar 

  28. Sanchez AH, Soares T, Wolahan A (2017) Reliability aspects of mega-constellation satellites and their impact on the space debris environment. In: Proceedings of the 2017 annual reliability and maintainability symposium (RAMS), Orlando, FL, USA, 23–26 January 2017, pp 1–5

  29. De Weck O, de Neufville R, Staged MC (2004) Deployment of communications satellite constellations in low earth orbit. J Aerosp Comput Inf Commun 1:119–136

    Article  Google Scholar 

  30. McGrath C, Kerr E, Macdonald M (2015) An analytical, low-cost deployment strategy for satellite constellations. In: Proceedings of the 13th reinventing space conference, Oxford, UK, 10–13 November 2015

  31. Crisp N, Smith K, Hollingsworth P (2015) Launch and deployment of distributed small satellite systems. Acta Astronaut 114:65–78

    Article  Google Scholar 

  32. Lee HW, Jakob PC, Ho K, Shimizu S, Yoshikawa S (2018) Optimization of satellite constellation deployment strategy considering uncertain areas of interest. Acta Astronaut 153:213–228

    Article  Google Scholar 

  33. Mitra RN, Agrawal DP (2015) 5G mobile technology: a survey. ICT Express 1:132–137. Aerospace 2020, 7, 133 13 of 18

  34. Iera A, Molinaro A (2002) Designing the interworking of terrestrial and satellite IP-based network. IEEE Commun Mag 40:136–144

    Article  Google Scholar 

  35. Chini P, Giambene G, Kota S (2009) A survey on mobile satellite systems. Int J Satell Commun Netw 28:29–57

    Article  Google Scholar 

  36. Kodheli O, Gannoti A, Vanelli-Coralli A (2017) Integration of satellites in 5G through LEO constellations. In: Proceedings of the Globecomm 2017—2017 IEEE global communications conference, Singapore, 4–8 December 2017, pp 1–6

  37. Pan C, Du H, Liu Q (2013) A routing algorithm for Mpls traffic engineering in Leo Satellite Constellation Network. Int J Innov Comput Inf Control 9:4139–4149

    Google Scholar 

  38. Hoyhtya M, Mammela A, Chen X, Hulkkonen A, Janhunen J, Dunat J-C, Gardey J (2017) Database-assisted spectrum sharing in satellite communications: a survey. IEEE Access 5:25322–25341

    Article  Google Scholar 

  39. Israel D, Edwards BL, Staren JW (2017) Laser communications relay demonstration (LCRD) update and the path towards optical relay operations. In: Proceedings of the 2017 IEEE aerospace conference, Yellowstone Conference Center, Big Sky, MT, USA, 4–11 March 2017, pp 1–6

  40. Muncheberg S, Gal C, Horwath J, Kinter H, Navajas LM, Soutullo M (2018) Development status and breadboard results of a laser communication terminal for large LEO constellations. In: Proceedings of the SPIE 11180, international conference on space optics—ICSO 2018, Palatanias, Greece, 9–12 October 2018

  41. Nag S, Murakami D, Marker N, Lifson M, Kopardekar P (2019) Prototyping operational autonomy for space traffic management. In: Proceedings of the 70th international astronautical congress (IAC), Washington, DC, USA, 21–25 October 2019, p 16

  42. Morton M, Roberts T (2011) Joint space operations center (JSpOC) mission system (JMS). In: Proceedings of the 2011 AMOS conference, Maui, HI, USA, 13–16 September 2011, p 9

  43. Diserens S, Lewis HG, Fliege J (2020) IAC-19-A6.2.6: NewSpace and its implications for space debris models. J Space Saf Eng 9

  44. Anz-Meador PD, Phillip D, Opiela JN, Shoots D, Liou J-C (2018) History of on-orbitsatellite fragmentations, 15th ed.; NASA Technical Reports; National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Huston, TX, USA, 4 July 2018, pp 1–637

  45. Bonnal C, Ruault J-M, Desjean M-C (2013) Active debris removal: recent progress and current trends. Acta Astronaut 85:51–60

    Article  Google Scholar 

  46. Felicetti L, Emami MR (2016) A multi-spacecraft formation approach to space debris surveillance. Acta Astronaut 127:491–504

    Article  Google Scholar 

  47. Flohrer T, Krag H, Klinkrad H, Schildknecht T (2011) Feasibility of performing space surveillance tasks with a proposed space-based optical architecture. Adv Space Res 47:1029–1042

    Article  Google Scholar 

  48. Angel F-A, Ou M, Khanh P, Steve U (2014) A review of space robotics technologies for on-orbit servicing. Prog Aerosp Sci 68:1–26

    Article  Google Scholar 

  49. Infantolino GM, di Lizia P, Topputo F, Bernelli-Zazzera F (2018) On-Board Telemetry Monitoring via Support Vector Machine with Application to Philae Solar Generator. Aerotecnica Missili Spazi 97:183–188

    Article  Google Scholar 

  50. Bennett JCS, Lachut M, Kooymans D, Pollard A, Smith C, Flegel S, Mockel M, O’Leary J, Samuel R, Wardman J, et al (2019) An Australian conjunction assessment service. In: Proceedings of the 2019 AMOS conference, Maui, HI, USA, 17–20 September 2019, p 9

  51. Hassin JB, Iridium LK (2019) Completes historic satellite launch campaign. 11 January 2019. Aerospace 2020, 7 133 14 of 18

  52. Zimmerman R, Doan D, Leung L, Mason J, Parsons N, Shaid K (2017) Commissioning the world’s largest satellite constellation. In: Proceedings of the 31st annual AIAA/USU conference on small satellites, Logan, UT, USA, 5–10 August 2017

  53. Weiss W, Rucinski S, Moffat A, Schwarzenberg-Czerny A, Koudelka O, Grant C, Zee R, Kuschnig R, Matthews J, Orleanski P et al (2014) BRITE-Constellation: nanosatellites for precision photometry of bright stars. Publ Astron Soc Pac 126:573–585

    Article  Google Scholar 

  54. Jiang Y, Jingyin W, Zhang G, Li X, Wu J (2019) Geometric processing and accuracy verification of Zhuhai-1 hyperspectral satellites. Remote Sens 11:996

    Article  Google Scholar 

  55. Glumb R, Lapsley M, Mantica P, Glumb A (2017) TRL6 testing of hyperspectral Fourier transform spectrometer instrument for CubeSat applications. In: Proceedings of the 31st annual AIAA/USU conference on small satellites, Logan, UT, USA, 5–10 August 2017

  56. Polischuk GM, Kozlov V, Ilitchov V, Kozlov AG, Bartenev VA, Kossenko V, Anphimov N, Revnivykh S, Pisarev S, Tyulyakov A et al (2002) The global navigation satellite system Glonass: development and usage in the 21st century. In: Proceedings of the 34th annual precise time and time interval (PTTI) meeting, Reston, VA, USA, 3–5 December 2002, p 11

  57. Zohdi TI (2019) The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput Mech. https://doi.org/10.1007/s00466-019-01761-9

    Article  Google Scholar 

  58. Zohdi TI (2020) An agent-based computational framework for simulation of global pandemic and social response on planet X. Comput Mech. https://doi.org/10.1007/s00466-020-01886-2

    Article  MathSciNet  Google Scholar 

  59. Zohdi TI (2021) A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety. Comput Methods Appl Mech Eng 373(1):113446

    Article  MathSciNet  Google Scholar 

  60. Zohdi TI (2022) A digital-twin and machine-learning framework for precise heat and energy management of data-centers. Comput Mech. https://doi.org/10.1007/s00466-022-02152-3

    Article  MathSciNet  Google Scholar 

  61. Zohdi TI (2022) An adaptive digital framework for energy management of complex multi-device systems. Comput Mech. https://doi.org/10.1007/s00466-022-02212-8

    Article  Google Scholar 

  62. Zohdi TI (2022) A machine-learning framework for the simulation of nuclear deflection of Planet–Killer–Asteroids. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2022.115316

    Article  MathSciNet  Google Scholar 

  63. Goodrich P, Betancourt O, Arias A, Zohdi TI (2022) Placement and drone flight path mapping of agricultural soil sensors using machine learning. Comput Electron Agric. https://doi.org/10.1016/j.compag.2022.107591

    Article  Google Scholar 

  64. Zohdi TI (2023) A machine-learning digital-twin for rapid large-scale solar-thermal energy system design. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2023.115991

    Article  MathSciNet  Google Scholar 

  65. Zohdi TI (2023) A voxel-based machine-learning framework for thermo-fluidic identification of unknown objects. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2023.116571

    Article  MathSciNet  Google Scholar 

  66. Holland JH (1975) Adaptation in natural & artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  67. Holland JH, Miller JH (1991) Artificial adaptive agents in economic theory (PDF). Am Econ Rev 81(2):365–371. Archived from the original (PDF) on October 27, 2005

  68. Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning. Addison-Wesley

    Google Scholar 

  69. Davis L (1991) Handbook of genetic algorithms. Thompson Computer Press

    Google Scholar 

  70. Onwubiko C (2000) Introduction to engineering design optimization. Prentice Hall

    Google Scholar 

  71. Goldberg DE, Deb K (2000) Special issue on genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):121–124

    Article  Google Scholar 

  72. Luenberger D (1974) Introduction to linear & nonlinear programming. Addison-Wesley, Menlo Park

  73. Gill P, Murray W, Wright M (1995) Practical optimization. Academic Press

    Google Scholar 

  74. Hohmann W (1925) Die Erreichbarkeit der Himmelskorper. R. Oldenbourg Verlag, Munich. ISBN 3-486-23106-5

  75. Bate RR, Mueller DD, White JE (1971) Fundamentals of astrodynamics (Dover books on aeronautical engineering). Dover Books

  76. Lo MW, Ross SD (1997) Surfing the solar system: invariant manifolds and the dynamics of the solar system. Technical Report. IOM. JPL. pp 2–4. 312/97

Download references

Acknowledgements

This work has been supported by the UC Berkeley College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdi, T.I. A machine-learning enabled digital-twin framework for the rapid design of satellite constellations for “Planet-X”. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02467-3

Keywords

Navigation