Skip to main content
Log in

The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The goal of this article is to provide basic modeling and simulation techniques for systems of multiple interacting Unmanned Aerial Vehicles, so called “swarms”, for applications in mapping. Also, the paper illustrates the application of basic machine-learning algorithms to optimize their information gathering. Numerical examples are provided to illustrate the concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. There are other modeling paradigms, for example mimicing ant colonies [16] which exhibit foraging-type behavior and trail-laying-trail-following mechanisms for finding food sources (see Kennedy and Eberhart [12] and Bonabeau et. al [16], Dorigo et. al,  [17], Bonabeau et. al [16], Bonabeau and Meyer [18] and Fiorelli et al [19]).

  2. The parameters in the model will be optimized shortly.

References

  1. Zohdi TI (2018) Multiple UAVs for Mapping: a review of basic modeling, simulation and applications. Ann Rev Environ Resour. https://doi.org/10.1146/annurev-environ-102017-025912

    Article  Google Scholar 

  2. Zohdi TI (2017) On the dynamics and breakup of quadcopters using a discrete element method framework. Comput Methods Appl Mech Eng 327:503–521

    Article  MathSciNet  Google Scholar 

  3. Breder CM (1954) Equations descriptive of fish schools and other animal aggregations. Ecology 35(3):361–370

    Article  Google Scholar 

  4. Beni G (1988) The concept of cellular robotic system. In: IEEE international symposium on intelligent control, pp 57–62

  5. Brooks RA (1991) Intelligence without reason. In: Proceedings of the international joint conference on artificial intelligence (IJCAI-91), pp 569–595

  6. Dudek G, Jenkin M, Milios E, Wilkes D (1996) A taxonomy for multi-agent robotics. Auton Robots 3:375–397

    Article  Google Scholar 

  7. Cao YU, Fukunaga AS, Kahng A (1997) Cooperative mobile robotics: antecedents and directions. Auton Robots 4(1):7–27

    Article  Google Scholar 

  8. Liu Y, Passino KM (2000) Swarm intelligence: literature overview. Technical report, Ohio State University

  9. Turpin M, Michael N, Kumar V (2014) Capt: concurrent assignment and planning of trajectories for multiple robots. Int J Robot Res. https://doi.org/10.1177/0278364913515307

    Article  Google Scholar 

  10. Gazi V, Passino KM (2002) Stability analysis of swarms. In: Proceedings of the American control conference. Anchorage, AK May 8–10

  11. Bender J, Fenton R (1970) On the flow capacity of automated highways. Transp Sci 4:52–63

    Article  Google Scholar 

  12. Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann Publishers, Burlington

    Google Scholar 

  13. Zohdi TI (2003) Computational design of swarms. Int J Numer Methods Eng 57:2205–2219

    Article  MathSciNet  Google Scholar 

  14. Zohdi TI (2009) Mechanistic modeling of swarms. Comput Methods Appl Mech Eng 198(21–26):2039–2051

    Article  MathSciNet  Google Scholar 

  15. Zohdi TI (2017) An agent-based computational framework for simulation of competing hostile planet-wide populations. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2016.04.032

    Article  MathSciNet  Google Scholar 

  16. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  17. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  18. Bonabeau E, Meyer C (2001) Swarm intelligence: a whole new way to think about business. Harv Bus Rev 79(5):106–114

    Google Scholar 

  19. Fiorelli E, Leonard NE, Bhatta P, Paley D, Bachmayer R, Fratantoni DM (2004) Multi-auv control and adaptive sampling in monterey bay. In: Autonomous underwater vehicles, 2004 IEEE/OES, pp 134–147

  20. Feder T (2007) Statistical physics is for the birds. Phys Today 60:28–29

    Google Scholar 

  21. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. PNAS 105(4):1232–1237

    Article  Google Scholar 

  22. Zohdi TI (2003) Genetic design of solids possessing a random-particulate microstructure. Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043

    Article  MathSciNet  Google Scholar 

  23. Zohdi TI (2017) Dynamic thermomechanical modeling and simulation of the design of rapid free-form 3D printing processes with evolutionary machine learning. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.11.030

    Article  Google Scholar 

  24. Zohdi TI (2018) Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-form printing of complex mixtures. Comput Mech. https://doi.org/10.1007/s00466-018-1629-y

    Article  MATH  Google Scholar 

  25. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  26. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  27. Davis L (1991) Handbook of genetic algorithms. Thompson Computer Press, Washington, DC

    Google Scholar 

  28. Onwubiko C (2000) Introduction to engineering design optimization. Prentice Hall, New Jersey

    Google Scholar 

  29. Lagaros N, Papadrakakis M, Kokossalakis G (2002) Structural optimization using evolutionary algorithms. Comput Struct 80:571–589

    Article  Google Scholar 

  30. Papadrakakis M, Lagaros N, Thierauf G, Cai J (1998a) Advanced solution methods in structural optimisation using evolution strategies. Eng Comput J 15(1):12–34

    Article  Google Scholar 

  31. Papadrakakis M, Lagaros N, Tsompanakis Y (1998b) Structural optimization using evolution strategies and neutral networks. Comput Methods Appl Mech Eng 156(1):309–335

    Article  Google Scholar 

  32. Papadrakakis M, Lagaros N, Tsompanakis Y (1999a) Optimization of large-scale 3D trusses using evolution strategies and neural networks. Int J Space Struct 14(3):211–223

    Article  Google Scholar 

  33. Papadrakakis M, Tsompanakis J, Lagaros N (1999b) Structural shape optimisation using evolution strategies. Eng Optim 31:515–540

    Article  Google Scholar 

  34. Goldberg DE, Deb K (2000) Special issue on genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):121–124

    Article  Google Scholar 

  35. Mueller MW, D’Andrea R (2014) Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: IEEE international conference on robotics and automation (ICRA), 2014

  36. Mueller MW, D’Andrea R (2015) Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles. Int J Robot Res 35(8):873–889

    Article  Google Scholar 

  37. Mueller MW, Hehn M, D’Andrea R (2015) A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans Robot 31(8):1294–1310

    Article  Google Scholar 

  38. Hehn M, Ritz R, D’Andrea R (2012) Performance benchmarking of quadrotor systems using time-optimal control. Auton Robots 33(1–2):69–88

    Article  Google Scholar 

  39. Houska B, Ferreau H, Diehl M (2011) ACADO Toolkit: an open source framework for automatic control and dynamic optimization. Optim Control Appl Methods 32(3):298–312

    Article  MathSciNet  Google Scholar 

  40. Tagliabue A, Wu X, Mueller MW (2018) Model-free online motion adaptation for optimal range and endurance of multicopters. In: IEEE international conference on robotics and automation (ICRA), IEEE, 2019

  41. Holda C, Ghalamchi B, Mueller MW (2018) Tilting multicopter rotors for increased power efficiency and yaw authority. In: International conference on unmanned aerial systems (ICUAS), IEEE, pp 143–148

  42. Ring J (1963) The laser in astronomy. p. 672-3, New Scientist

  43. Cracknell AP, Hayes L, (2007) Introduction to remote sensing, 2 edn. Taylor and Francis, London. ISBN 0-8493-9255-1. OCLC 70765252

  44. Goyer GG, Watson R (1963) The laser and its application to meteorology. Bull Am Meteorol Soc 44(9):564–575 [568]

    Article  Google Scholar 

  45. Medina A, Gaya F, Pozo F (2006) Compact laser radar and three-dimensional camera. J Opt Soc Am A 23:800–805

    Article  Google Scholar 

  46. Trickey E, Church P, Cao X (2013) Characterization of the OPAL obscurant penetrating LiDAR in various degraded visual environments. In: Proceedings SPIE 8737, degraded visual environments: enhanced, synthetic, and external vision solutions 2013, 87370E (16 May 2013). https://doi.org/10.1117/12.2015259

  47. Hansard M, Lee S, Choi O, Horaud R (2012) Time-of-flight cameras: principles, methods and applications. SpringerBriefs in Computer Science. https://doi.org/10.1007/978-1-4471-4658-2. ISBN 978-1-4471-4657-5

  48. Schuon S, Theobalt C, Davis J, Thrun S (2008) High-quality scanning using time-of-flight depth superresolution. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2008. Institute of Electrical and Electronics Engineers. pp 1–7

  49. Gokturk SB, Yalcin H, Bamji C (2005) A time-of-flight depth sensor-system description, issues and solutions. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2004. Institute of Electrical and Electronics Engineers, pp 35–45. https://doi.org/10.1109/CVPR.2004.291

  50. ASC’s 3D Flash LIDAR camera selected for OSIRIS-REx asteroid mission. NASASpaceFlight.com. 2012-05-13

  51. Jan Aue, Dirk Langer, Bernhard Muller-Bessler, Burkhard Huhnke, (2011). Efficient segmentation of 3D LIDAR point clouds handling partial occlusion. In: 2011 IEEE intelligent vehicles symposium (IV). Baden-Baden, Germany: IEEE. https://doi.org/10.1109/ivs.2011.5940442. ISBN 978-1-4577-0890-9

  52. Hsu S, Acharya S, Rafii A, New R (2006) Performance of a time-of-flight range camera for intelligent vehicle safety applications. In: Advanced microsystems for automotive applications 2006. VDI-Buch. Springer, pp 205–219 (Archived from the original (pdf) on 2006-12-06. Retrieved 2018-06-25). https://doi.org/10.1007/3-540-33410-6-16. ISBN 978-3-540-33410-1

  53. Elkhalili O, Schrey OM, Ulfig W, Brockherde W, Hosticka BJ (2006) A 64x8 pixel 3-D CMOS time-of flight image sensor for car safety applications. IN: European solid state circuits conference 2006, pp 568–571 (retrieved 2010-03-05). https://doi.org/10.1109/ESSCIR.2006.307488, ISBN 978-1-4244-0302-8

  54. Zohdi TI (2019) Rapid simulation-based uncertainty quantification of flash-type time-of-flight and Lidar-based body-scanning processes. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.03.056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdi, T.I. The Game of Drones: rapid agent-based machine-learning models for multi-UAV path planning. Comput Mech 65, 217–228 (2020). https://doi.org/10.1007/s00466-019-01761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01761-9

Keywords

Navigation