Skip to main content
Log in

A sequential linear programming (SLP) approach for uncertainty analysis-based data-driven computational mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this article, an efficient sequential linear programming algorithm (SLP) for uncertainty analysis-based data-driven computational mechanics (UA-DDCM) is presented. By assuming that the uncertain constitutive relationship embedded behind the prescribed data set can be characterized through a convex combination of the local data points, the upper and lower bounds of structural responses pertaining to the given data set, which are more valuable for making decisions in engineering design, can be found by solving a sequential of linear programming problems very efficiently. Numerical examples demonstrate the effectiveness of the proposed approach on sparse data set and its robustness with respect to the existence of noise and outliers in the data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Since the function \({d}^{2}\) is defined on some pre-specified dataset \(\mathcal{D}\), which is generally discrete and could be obtained by experimental measurements or numerical computations, there is no differentiable structure for accelerating the solution process of Eq. (1).

  2. The matrix \(\mathcal{D}\) guarantees Eqs. (10) and (11) to be consistent since in general the stress and strain components have different magnitudes. In particular, one can use \(\mathcal{D}=\mathrm{diag}({D}_{1},\dots ,{D}_{6})\) with \({D}_{i}\) denoting the median of the set \(\left\{{{\sigma }_{j,ei}^{\mathrm{d}}/\varepsilon }_{j,ei}^{\mathrm{d}}\right\}\), \(j=1,\dots ,{N}_{\mathrm{c}}\).

References

  1. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101

    Article  MathSciNet  Google Scholar 

  2. Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641

    Article  MathSciNet  Google Scholar 

  3. He QZ, Chen JS (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng 363:112791

    Article  MathSciNet  Google Scholar 

  4. Kanno Y (2018) Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Jpn J Ind Appl Math 35:1085–1101

    Article  MathSciNet  Google Scholar 

  5. Kanno Y (2019) Mixed-integer programming formulation of a data-driven solver in computational elasticity. Optim Lett 13:1505–1514

    Article  MathSciNet  Google Scholar 

  6. Conti S, Müller S, Ortiz M (2018) Data-driven problems in elasticity. Arch Ration Mech Anal 229:79–123

    Article  MathSciNet  Google Scholar 

  7. Conti S, Müller S, Ortiz M (2020) Data-driven finite elasticity. Arch Ration Mech Anal 237:1–33

    Article  MathSciNet  Google Scholar 

  8. Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113:1697–1710

    Article  MathSciNet  Google Scholar 

  9. Nguyen LTK, Keip MA (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115

    Article  Google Scholar 

  10. Platzer A, Leygue A, Stainier L, Ortiz M (2021) Finite element solver for data-driven finite strain elasticity. Comput Methods Appl Mech Eng 379:113756

    Article  MathSciNet  Google Scholar 

  11. Nguyen LTK, Rambausek M, Keip MA (2020) Variational framework for distance-minimizing method in data-driven computational mechanics. Comput Methods Appl Mech Eng 365:112898

    Article  MathSciNet  Google Scholar 

  12. Carrara P, De Lorenzis L, Stainier L, Ortiz M (2020) Data-driven fracture mechanics. Comput Methods Appl Mech Eng 372:113390

    Article  MathSciNet  Google Scholar 

  13. He XL, He QZ, Chen JS, Sinha U and Sinha S (2020) Physics-constrained local convexity data-driven modeling of anisotropic nonlinear elastic solids. Data-Centric Eng 1

  14. Eggersmann R, Kirchdoerfer T, Reese S, Stainier L, Ortiz M (2019) Model-free data-driven inelasticity. Comput Methods Appl Mech Eng 350:81–99

    Article  MathSciNet  Google Scholar 

  15. Leygue A, Coret M, Réthoré J, Stainier L, Verron E (2018) Data-based derivation of material response. Comput Methods Appl Mech Eng 331:184–196

    Article  MathSciNet  Google Scholar 

  16. Stainier L, Leygue A, Ortiz M (2019) Model-free data-driven methods in mechanics: material data identification and solvers. Comput Mech 64:381–393

    Article  MathSciNet  Google Scholar 

  17. Réthoré J, Leygue A, Coret M, Stainier L, Verron E (2018) Computational measurements of stress fields from digital images. Int J Numer Methods Eng 113:1810–1826

    Article  MathSciNet  Google Scholar 

  18. Dalémat M, Coret M, Leygue A, Verron E (2019) Measuring stress field without constitutive equation. Mech Mater 136:103087

    Article  Google Scholar 

  19. Leygue A, Seghir R, Réthoré J, Coret M, Verron E, Stainier L (2019) Non-parametric material state field extraction from full field measurements. Comput Mech 64:501–509

    Article  MathSciNet  Google Scholar 

  20. Ibañez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2016) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25:47–57

    Article  MathSciNet  Google Scholar 

  21. Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60:813–826

    Article  MathSciNet  Google Scholar 

  22. Kanno Y (2020) A kernel method for learning constitutive relation in data-driven computational elasticity. Jpn J Ind Appl Math 38:39–77

    Article  MathSciNet  Google Scholar 

  23. Gebhardt CG, Steinbach MC, Schillinger D, Rolfes R (2020) A framework for data-driven structural analysis in general elasticity based on nonlinear optimization: the dynamic case. Int J Numer Methods Eng 121:5447–5468

    Article  MathSciNet  Google Scholar 

  24. Eggersmann R, Stainier L, Ortiz M, Reese S (2021) Model-free data-driven computational mechanics enhanced by tensor voting. Comput Methods Appl Mech Eng 373:113499

    Article  MathSciNet  Google Scholar 

  25. He XL, He QZ, Chen JS (2021) Deep autoencoders for physics-constrained data-driven nonlinear materials modeling. Comput Methods Appl Mech Eng 385:114034

    Article  MathSciNet  Google Scholar 

  26. Eggersmann R, Stainier L, Ortiz M, Reese S (2021) Efficient data structures for model-free data-driven computational mechanics. Comput Methods Appl Mech Eng 382:113855

    Article  MathSciNet  Google Scholar 

  27. Tang S, Li Y, Qiu H, Yang H, Saha S, Mojumder S, Liu WK, Guo X (2020) MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis. Comput Methods Appl Mech Eng 364:112955

    Article  MathSciNet  Google Scholar 

  28. Tang S, Zhang G, Yang H, Li Y, Liu WK, Guo X (2019) MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Comput Methods Appl Mech Eng 357:112587

    Article  MathSciNet  Google Scholar 

  29. Tang S, Yang H, Qiu H, Fleming M, Liu WK, Guo X (2021) MAP123-EPF: A mechanistic-based data-driven approach for numerical elastoplastic modeling at finite strain. Comput Methods Appl Mech Eng 373:113484

    Article  MathSciNet  Google Scholar 

  30. Guo X, Du ZL, Liu C, Tang S (2021) A new uncertainty analysis-based framework for data-driven computational mechanics. J Appl Mech-T Asme 88:111003

    Article  Google Scholar 

  31. Kanno Y (2023) Computation-with-confidence for static elasticity: Data-driven approach with order statistics. ZAMM - J Appl Math Mech 103:18

    Article  MathSciNet  Google Scholar 

  32. Boyd S, Boyd SP and Vandenberghe L (2004) Convex optimization Cambridge university press

  33. Du JM, Du ZL, Wei YH, Zhang WS, Guo X (2018) Exact response bound analysis of truss structures via linear mixed 0–1 programming and sensitivity bounding technique. Int J Numer Methods Eng 116:21–42

    Article  MathSciNet  Google Scholar 

  34. Muja M, Lowe D and Vancouver B, Canada (2009) Flann-fast library for approximate nearest neighbors user manual. 5

  35. Muja M and Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration. 2: 2

  36. Yildirim EA, Wright SJ (2002) Warm-start strategies in interior-point methods for linear programming. SIAM J Optim 12:782–810

    Article  MathSciNet  Google Scholar 

  37. Colombo M, Gondzio J and Grothey AJMP (2011) A warm-start approach for large-scale stochastic linear programs. 127: 371-397

  38. John E, Yıldırım EA (2008) Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41:151–183

    Article  MathSciNet  Google Scholar 

  39. Spendley W, Hext GR and Himsworth FRJT (1962) Sequential application of simplex designs in optimisation and evolutionary operation. 4: 441-461

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation (11821202, 12372122, 12002073, 12002077), the National Key Research and Development Plan (2020YFB1709401), 111 Project (B14013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongliang Du or Xu Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The SLP-UADDCM algorithm for 3D elastic continuum

Appendix: The SLP-UADDCM algorithm for 3D elastic continuum

As illustrated in Table 11, the SLP-UADDCM algorithm for 3D elastic continuum is similar to its 1D counterpart in Table 1. It should be pointed out that, here, all the data points in \(\mathcal{D}\) should be sorted according to the algebraic values of the inner product of \(\langle {{\varvec{\varepsilon}}}_{j}^{\mathrm{d}},{\left(\mathrm{1,1},\mathrm{1,1},\mathrm{1,1}\right)}^{\boldsymbol{\top }}\rangle , j=1,\dots ,{N}_{\mathrm{d}}\). Moreover, in 3D cases, the third step of updating the data points for local convex hull construction is different from Table 1, which will be explained in detail as follows. Specifically, in order to enhance the feasibility of \({\mathcal{P}}^{(k)}\) in Eq. (6), the local convex hull in the next step should be able to contain the current stress and strain state as much as possible. However, only selecting a number of data points closest to the current state in the data set will easily cause that the current state is not covered by the local convex hull [3]. An effective treatment for this issue is to cover all possible directions in phase space when local convex hulls are constructed. To this end, we first determine a regular simplex [39] whose vertices are calculated as:

$$\left\{\begin{array}{c}{{\varvec{\varepsilon}}}_{1,e}^{\mathrm{s}}={{\varvec{\varepsilon}}}_{e}^{(k)}-{\left({\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1}\right)}^{\mathbf{\top }},\\ {{\varvec{\varepsilon}}}_{2,e}^{\mathrm{s}}={{\varvec{\varepsilon}}}_{1,e}^{\mathrm{s}}+{\left({p}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1}\right)}^{\mathbf{\top }},\\ {{\varvec{\varepsilon}}}_{3,e}^{\mathrm{s}}={{\varvec{\varepsilon}}}_{1,e}^{\mathrm{s}}+{\left({q}_{k+1},{p}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1}\right)}^{\mathbf{\top }},\\ \dots \\ {{\varvec{\varepsilon}}}_{7,e}^{\mathrm{s}}={{\varvec{\varepsilon}}}_{1,e}^{\mathrm{s}}+{\left({q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{p}_{k+1}\right)}^{\mathbf{\top }},\end{array}\right.$$
(10)
$$\left\{\begin{array}{c}{{\varvec{\sigma}}}_{1,e}^{\mathrm{s}}={{\varvec{\sigma}}}_{e}^{(k)}-{{\varvec{\mathcal{D}}}\left({\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1},{\gamma }_{k+1}\right)}^{\mathbf{\top }},\\ {{\varvec{\sigma}}}_{2,e}^{\mathrm{s}}={{\varvec{\sigma}}}_{1,e}^{\mathrm{s}}+{{\varvec{\mathcal{D}}}\left({p}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1}\right)}^{\mathbf{\top }},\\ {{\varvec{\sigma}}}_{3,e}^{\mathrm{s}}={{\varvec{\sigma}}}_{1,e}^{\mathrm{s}}+{{\varvec{\mathcal{D}}}\left({q}_{k+1},{p}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1}\right)}^{\mathbf{\top }},\\ \dots \\ {{\varvec{\sigma}}}_{7,e}^{\mathrm{s}}={{\varvec{\sigma}}}_{1,e}^{\mathrm{s}}+{{\varvec{\mathcal{D}}}\left({q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{q}_{k+1},{p}_{k+1}\right)}^{\mathbf{\top }},\end{array}\right.$$
(11)

where \(\mathcal{D}\) is the scaling matrix,Footnote 2 and

$${p}_{k+1}=\frac{{L}^{(k+1)}}{6\sqrt{2}}\left(5+\sqrt{7}\right), {q}_{k+1}=\frac{{L}^{(k+1)}}{6\sqrt{2}}\left(\sqrt{7}-1\right), {\gamma }_{k+1}=\frac{1}{7}\left(5{q}_{k+1}+{p}_{k+1}\right),$$
(12)

respectively. In Eq. (1012), we choose \({N}_{\mathrm{c}}=7\) and the value of \({L}^{(k+1)}\) represents the Euclidean distance between the regular simplex vertices. Since the vertices \(\left({\left({{\varvec{\varepsilon}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}, {\left({{\varvec{\sigma}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}\right), j=1,\dots ,{N}_{\mathrm{c}}; e=1,\dots ,m\) may not coincide with data points, the data pairs \(\left({\left({{\varvec{\varepsilon}}}_{j,e}^{\mathrm{d}}\right)}^{(k+1)}, {\left({{\varvec{\sigma}}}_{j,e}^{\mathrm{d}}\right)}^{(k+1)}\right), j=1,\dots ,{N}_{\mathrm{c}}; e=1,\dots ,m\) used to construct the local convex hulls in \((k+1)\)-th iteration are determined as the data points closest to the vertices of the regular simplex in the data set \(\mathcal{D}\) respectively, i.e.,

$$\Vert \left({\left({{\varvec{\varepsilon}}}_{j,e}^{\mathrm{d}}\right)}^{(k+1)}, {\left({{\varvec{\sigma}}}_{j,e}^{\mathrm{d}}\right)}^{(k+1)}\right)-\left({\left({{\varvec{\varepsilon}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}, {\left({{\varvec{\sigma}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}\right)\Vert =\underset{l=1,\dots ,{N}_{\mathrm{d}}}{\mathrm{min}}\Vert \left({{\varvec{\varepsilon}}}_{l}^{\mathrm{d}}{,\boldsymbol{ }\boldsymbol{ }\boldsymbol{ }{\varvec{\sigma}}}_{l}^{\mathrm{d}}\right)-\left({\left({{\varvec{\varepsilon}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}, {\left({{\varvec{\sigma}}}_{j,e}^{\mathrm{s}}\right)}^{\left(k+1\right)}\right)\Vert , j=1,\dots ,{N}_{\mathrm{c}}; e=1,\dots ,m.$$
(14)

This updating strategy of data points for local convex hull construction is illustrated schematically in Fig. 

Fig. 17
figure 17

A schematic illustration of the proposed adaptive local convexification scheme (2D case)

17. Similar to the Algorithm 1 in Table 1, if \({\mathcal{P}}^{(k)}\) in Eq. (6) is feasible, \({L}^{(k)}\) is reduced as \({L}^{(k+1)}=\mathrm{max}\left({L}^{(1)}/{\rho }^{k}, {L}_{\mathrm{min}}\right)\) with \({L}^{(1)}\), \(\rho \), \({L}_{\mathrm{min}}\) denoting the initial length, scaling factor and the low bound of \({L}^{(k+1)}\). Otherwise, let \({L}^{(k+1)}\)=\({L}^{(k)}+0.1{L}^{(k)}\). In addition, the quantity \({\lambda }_{ej}, e=1,\dots ,m; j=1,\dots ,{N}_{\mathrm{c}}\) can also be relaxed to increase the feasible region of \({\mathcal{P}}^{(k+1)}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Liu, C., Du, Z. et al. A sequential linear programming (SLP) approach for uncertainty analysis-based data-driven computational mechanics. Comput Mech 73, 943–965 (2024). https://doi.org/10.1007/s00466-023-02395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02395-8

Keywords

Navigation