Skip to main content
Log in

Robust, strong form mechanics on an adaptive structured grid: efficiently solving variable-geometry near-singular problems with diffuse interfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. The purpose of this work is to present a comprehensive strategy for efficiently solving such problems on an adaptive structured grid, while expositing some of the basic yet important nuances associated with solving near-singular problems in strong form. We employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting semidefinite equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. In this work, we present a computational strategy for efficiently solving near-singular SBM-based solid mechanics problems. We use the block-structured adaptive mesh refinement method, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver’s accuracy and performance for three representative examples: (a) plastic strain evolution around a void, (b) crack nucleation and propagation in brittle materials, and (c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We note that the \(\varvec{n}\cdot \nabla g\) boundeness restriction is erroneously absent from the original presentation of the theorem in [8].

References

  1. Runnels B, Agrawal V, Zhang W, Almgren A (2021) Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver. J Comput Phys 427:110065

    Article  MathSciNet  MATH  Google Scholar 

  2. Celestine A-DN, Agrawal V, Runnels B (2020) Experimental and numerical investigation into mechanical degradation of polymers. Compos Part B Eng 201:108369

    Article  Google Scholar 

  3. Runnels B, Agrawal V (2020) Phase field disconnections: a continuum method for disconnection-mediated grain boundary motion. Scr Mater 186:6–10

    Article  Google Scholar 

  4. Gokuli M, Runnels B (2021) Multiphase field modeling of grain boundary migration mediated by emergent disconnections. Acta Mater 217:117149

    Article  Google Scholar 

  5. Strutton JW, Moser NH, Garboczi EJ, Jennings AR, Runnels B, McCollum JM (2022) Interface history on strain field evolution in epoxy resins. ACS Appl Polym Mater 4:1535–1542

    Article  Google Scholar 

  6. Agrawal V, Runnels B (2021) Block structured adaptive mesh refinement and strong form elasticity approach to phase field fracture with applications to delamination, crack branching and crack deflection. Comput Methods Appl Mech Eng 385:114011

    Article  MathSciNet  MATH  Google Scholar 

  7. Chadwick AF, Stewart JA, Enrique RA, Du S, Thornton K (2018) Numerical modeling of localized corrosion using phase-field and smoothed boundary methods. J Electrochem Soc 165(10):C633

    Article  Google Scholar 

  8. Schmidt EM, Quinlan JM, Runnels B (2022) Self-similar diffuse boundary method for phase boundary driven flow. Phys Fluids 34:117108

    Article  Google Scholar 

  9. Yu H-C, Chen H-Y, Thornton K (2012) Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model Simul Mater Sci Eng 20(7):075008

    Article  Google Scholar 

  10. Li X, Lowengrub J, Rätz A, Voigt A (2009) Solving PDEs in complex geometries: a diffuse domain approach. Commun Math Sci 7(1):81

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang W, Almgren A, Beckner V, Bell J, Blaschke J, Chan C, Day M, Friesen B, Gott K, Graves D et al (2019) AMReX: a framework for block-structured adaptive mesh refinement. J Open Source Softw 4(37):1370–1370

    Article  Google Scholar 

  12. Hittinger JA, Banks JW (2013) Block-structured adaptive mesh refinement algorithms for Vlasov simulation. J Comput Phys 241:118–140

    Article  MathSciNet  MATH  Google Scholar 

  13. Schornbaum F, Rüde U (2018) Extreme-scale block-structured adaptive mesh refinement. SIAM J Sci Comput 40(3):C358–C387

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Löffler F et al (2014) A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parallel Distrib Comput 74(12):3217–3227

    Article  Google Scholar 

  15. Berger M, Rigoutsos I (1991) An algorithm for point clustering and grid generation. IEEE Trans Syst Man Cybern 21(5):1278–1286

    Article  Google Scholar 

  16. Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML (1998) A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J Comput Phys 142(1):1–46

    Article  MathSciNet  MATH  Google Scholar 

  17. Piller M, Stalio E (2004) Finite-volume compact schemes on staggered grids. J Comput Phys 197(1):299–340

    Article  MATH  Google Scholar 

  18. Alves M, Oliveira P, Pinho F (2021) Numerical methods for viscoelastic fluid flows. Annu Rev Fluid Mech 53:509–541

    Article  MATH  Google Scholar 

  19. Wesseling P, Segal A, Vankan J, Oosterlee C, Kassels C (1991) Finite volume discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. In: Presented at the 4th international symposium on computational fluid dynamics

  20. Anderson JD, Wendt J (1995) Computational fluid dynamics, vol 206. Springer, Berlin

    Google Scholar 

  21. Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579

    Article  MathSciNet  MATH  Google Scholar 

  22. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  23. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  MATH  Google Scholar 

  24. Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252

    Article  MATH  Google Scholar 

  25. Liang Y, Zhang X, Liu Y (2019) An efficient staggered grid material point method. Comput Methods Appl Mech Eng 352:85–109

    Article  MathSciNet  MATH  Google Scholar 

  26. Cardiff P, Demirdžić I (2021) Thirty years of the finite volume method for solid mechanics. Arch Comput Methods Eng 28(5):3721–3780

    Article  MathSciNet  Google Scholar 

  27. Wesseling P (1995) Introduction to multigrid methods. Tech. rep

  28. Kanso E, Arroyo M, Tong Y, Yavari A, Marsden JG, Desbrun M (2007) On the geometric character of stress in continuum mechanics. Z Angew Math Phys 58(5):843–856

    Article  MathSciNet  MATH  Google Scholar 

  29. Yavari A (2008) On geometric discretization of elasticity. J Math Phys 49(2):022901

    Article  MathSciNet  MATH  Google Scholar 

  30. Yavari A (2010) A geometric theory of growth mechanics. J Nonlinear Sci 20(6):781–830

    Article  MathSciNet  MATH  Google Scholar 

  31. Desbrun M, Kanso E, Tong Y (2006) Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2006 courses, pp 39–54

  32. Zhu C, Lee CT, Rangamani P (2022) Mem3dg: modeling membrane mechanochemical dynamics in 3d using discrete differential geometry. Biophys J 121(3):71a

    Article  Google Scholar 

  33. Ruocco E, Reddy J (2021) A discrete differential geometry-based approach to buckling and vibration analyses of inhomogeneous Reddy plates. Appl Math Model 100:342–364

    Article  MathSciNet  MATH  Google Scholar 

  34. Frankel T (2011) The geometry of physics: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  35. Aigner G, Hölzle U (1996) Eliminating virtual function calls in c++ programs. In: ECOOP’96-object-oriented programming: 10th European conference Linz, Austria, July 8–12, 1996 Proceedings 10. Springer, pp 142–166

  36. Eijkhout V, Chow E, van de Geijn R (2022) The science of computing

  37. Abrahams D, Gurtovoy A (2004) C++ template metaprogramming: concepts, tools, and techniques from Boost and beyond. Pearson Education, London

    Google Scholar 

  38. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer, Berlin

    MATH  Google Scholar 

  40. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  41. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570

    Article  MATH  Google Scholar 

  42. Li H, Li J, Yuan H (2018) A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor Appl Fract Mech 97:236–249

    Article  Google Scholar 

  43. Song C, Wolf JP (1997) The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput Methods Appl Mech Eng 147(3–4):329–355

    Article  MathSciNet  MATH  Google Scholar 

  44. Song C, Ooi ET, Natarajan S (2018) A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng Fract Mech 187:45–73

    Article  Google Scholar 

  45. Wolf JP, Song C (2000) The scaled boundary finite-element method-a primer: derivations. Comput Struct 78(1–3):191–210

    Article  Google Scholar 

  46. Song C, Wolf JP (2000) The scaled boundary finite-element method-a primer: solution procedures. Comput Struct 78(1–3):211–225

    Article  Google Scholar 

  47. Egger A, Pillai U, Agathos K, Kakouris E, Chatzi E, Aschroft IA, Triantafyllou SP (2019) Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review. Appl Sci 9(12):2436

    Article  Google Scholar 

  48. Sedmak A (2018) Computational fracture mechanics: an overview from early efforts to recent achievements. Fatigue Fract Eng Mater Struct 41(12):2438–2474

    Article  Google Scholar 

  49. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  MATH  Google Scholar 

  50. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  51. Nguyen T-T, Yvonnet J, Zhu Q-Z, Bornert M, Chateau C (2016) A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput Methods Appl Mech Eng 312:567–595

    Article  MathSciNet  MATH  Google Scholar 

  52. Hansen-Dörr AC, Dammaß F, de Borst R, Kästner M (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Eng Fract Mech 232:107004

    Article  Google Scholar 

  53. Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21

    Article  Google Scholar 

  54. Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102(3–4):711–727

    Article  MathSciNet  MATH  Google Scholar 

  55. Doan DH, Bui TQ, Duc ND, Fushinobu K (2016) Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy. Compos Part B Eng 99:266–276

    Article  Google Scholar 

  56. Dinachandra M, Alankar A (2020) A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics. Theor Appl Fract Mech 109:102681

    Article  Google Scholar 

  57. Kumar PAV, Dean A, Reinoso J, Lenarda P, Paggi M (2021) Phase field modeling of fracture in functionally graded materials: \(\gamma \)-convergence and mechanical insight on the effect of grading. Thin-Walled Struct 159:107234

    Article  Google Scholar 

  58. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4):045501

    Article  Google Scholar 

  59. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  60. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178(1):113–129

    Article  Google Scholar 

  61. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  62. Miehe C, Hofacker M, Schänzel L-M, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Methods Appl Mech Eng 294:486–522

    Article  MathSciNet  MATH  Google Scholar 

  63. Kuhn C, Noll T, Müller R (2016) On phase field modeling of ductile fracture. GAMM-Mitteilungen 39(1):35–54

    Article  MathSciNet  MATH  Google Scholar 

  64. Mesgarnejad A, Imanian A, Karma A (2019) Phase-field models for fatigue crack growth. Theor Appl Fract Mech 103:102282

    Article  Google Scholar 

  65. Carollo V, Reinoso J, Paggi M (2018) Modeling complex crack paths in ceramic laminates: a novel variational framework combining the phase field method of fracture and the cohesive zone model. J Eur Ceram Soc 38(8):2994–3003

    Article  Google Scholar 

  66. Tarafder P, Dan S, Ghosh S (2020) Finite deformation cohesive zone phase field model for crack propagation in multi-phase microstructures. Comput Mech 66(3):723–743

    Article  MathSciNet  MATH  Google Scholar 

  67. Quintanas-Corominas A, Turon A, Reinoso J, Casoni E, Paggi M, Mayugo J (2020) A phase field approach enhanced with a cohesive zone model for modeling delamination induced by matrix cracking. Comput Methods Appl Mech Eng 358:112618

    Article  MathSciNet  MATH  Google Scholar 

  68. Pham K, Marigo J-J, Maurini C (2011) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 59(6):1163–1190

    Article  MathSciNet  MATH  Google Scholar 

  69. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  70. Chen Y, Vasiukov D, Gélébart L, Park CH (2019) A FFT solver for variational phase-field modeling of brittle fracture. Comput Methods Appl Mech Eng 349:167–190

    Article  MathSciNet  MATH  Google Scholar 

  71. Ernesti F, Schneider M, Böhlke T (2020) Fast implicit solvers for phase-field fracture problems on heterogeneous microstructures. Comput Methods Appl Mech Eng 363:112793

    Article  MathSciNet  MATH  Google Scholar 

  72. Muixí A, Rodríguez-Ferran A, Fernández-Méndez S (2020) A hybridizable discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement. Int J Numer Methods Eng 121(6):1147–1169

    Article  MathSciNet  MATH  Google Scholar 

  73. Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De Lorenzis L, Rank E (2019) Phase-field modeling of brittle fracture with multi-level hp-fem and the finite cell method. Comput Mech 63(6):1283–1300

    Article  MathSciNet  MATH  Google Scholar 

  74. Giovanardi B, Scotti A, Formaggia L (2017) A hybrid xfem-phase field (xfield) method for crack propagation in brittle elastic materials. Comput Methods Appl Mech Eng 320:396–420

    Article  MathSciNet  MATH  Google Scholar 

  75. Lo Y-S, Borden MJ, Ravi-Chandar K, Landis CM (2019) A phase-field model for fatigue crack growth. J Mech Phys Solids 132:103684

    Article  MathSciNet  MATH  Google Scholar 

  76. Sun X, Duddu R et al (2021) A poro-damage phase field model for hydrofracturing of glacier crevasses. Extreme Mech Lett 45:101277

    Article  Google Scholar 

  77. Clayton T, Duddu R, Siegert M, Martínez-Pañeda E (2022) A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves. Eng Fract Mech 272:108693

    Article  Google Scholar 

  78. Mo X, Zhi H, Xiao Y, Hua H, He L (2021) Topology optimization of cooling plates for battery thermal management. Int J Heat Mass Transf 178:121612

    Article  Google Scholar 

  79. Andreasen CS, Sigmund O (2013) Topology optimization of fluid-structure-interaction problems in poroelasticity. Comput Methods Appl Mech Eng 258:55–62

    Article  MathSciNet  MATH  Google Scholar 

  80. Lógó J, Ismail H et al (2020) Milestones in the 150-year history of topology optimization: a review. Comput Assist Methods Eng Sci 27(2–3):97–132

    Google Scholar 

  81. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  82. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  83. Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  84. Allaire G, Jouve F, Toader A-M (2002) A level-set method for shape optimization. C R Math 334(12):1125–1130

    Article  MathSciNet  MATH  Google Scholar 

  85. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  86. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  87. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  88. Li B, Huang C, Li X, Zheng S, Hong J (2019) Non-iterative structural topology optimization using deep learning. Comput-Aided Des 115:172–180

    Article  Google Scholar 

  89. Rade J, Balu A, Herron E, Pathak J, Ranade R, Sarkar S, Krishnamurthy A (2021) Algorithmically-consistent deep learning frameworks for structural topology optimization. Eng Appl Artif Intel 106:104483

    Article  Google Scholar 

  90. Chi H, Zhang Y, Tang TLE, Mirabella L, Dalloro L, Song L, Paulino GH (2021) Universal machine learning for topology optimization. Comput Methods Appl Mech Eng 375:112739

    Article  MathSciNet  MATH  Google Scholar 

  91. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  92. Jihong Z, Han Z, Chuang W, Lu Z, Shangqin Y, Zhang W (2021) A review of topology optimization for additive manufacturing: status and challenges. Chin J Aeronaut 34(1):91–110

  93. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  94. Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171–183

  95. Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. CMES-Comput Model Eng Sci 6(6):547

  96. Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466

    Article  MathSciNet  MATH  Google Scholar 

  97. Jeong SH, Yoon GH, Takezawa A, Choi D-H (2014) Development of a novel phase-field method for local stress-based shape and topology optimization. Comput Struct 132:84–98

    Article  Google Scholar 

  98. Salazar de Troya MA, Tortorelli DA (2018) Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidiscip Optim 58(6):2369–2386

    Article  MathSciNet  Google Scholar 

  99. Jung M, Yoo J (2021) Phase field-based topology optimization of metallic structures for microwave applications using adaptive mesh refinement. Struct Multidiscip Optim 63(6):2685–2704

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

VA acknowledges the Auburn University Easley Cluster for support of this work. BR acknowledges support from Lawrence Berkeley National Laboratory, subcontract #7645776, and from the Office of Naval Research, Grant #N00014-21-1-2113. This work used the INCLINE cluster at the University of Colorado Colorado Springs. INCLINE is supported by the National Science Foundation, Grant #2017917. The authors wish to thank Dr. Scott Runnels at the University of Colorado Boulder, whose insights on cell and node-based fields led to key breakthroughs in solver development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Runnels.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Convergence data

Appendix A: Convergence data

The linear elastic, strong-form near-singular multigrid solver exhibited nearly universally linear convergence in the example problems presented in this work. Here, we present a more detailed exposition of the solver behavior in time for the fracture cases and the topology optimization example (Fig. 10). We note that in all cases, the results from the initial solve are not included because it is for the initial, non-regularized version of the problem. In all examples, we observe a rapid convergence during the first 3–4 iterations. This rapid convergence lasts until the error is reduced to \(10^{-3}\), \(10^{-4}\), and \(10^{-1}\) for mode I, stress-concentration, and topology optimization, respectively. A sharp reduction follows this in the convergence rate, which is almost always non-decreasing during the remaining solve.

In mode-I fracture and topology optimization, interestingly, the worst convergence occurs during the middle of the simulation; subsequently, convergence improves and approaches a constant rate. Both exhibit a couple of solves in which the convergence rate turned sharply from a higher to a lower value; in both cases, the convergence might be described as “piecewise linear.”

In the stress-concentration fracture case, linear convergence is constantly observed, but the convergence rate decreases steadily as the simulation progresses. We attribute this to the increasing irregularity of the problem, resulting from large chunks of material that have been degraded, and regions of the boundary that are under-regularized. In other words, it appears to be the fracture model, not the solver, that is responsible for the degrading convergence.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, V., Runnels, B. Robust, strong form mechanics on an adaptive structured grid: efficiently solving variable-geometry near-singular problems with diffuse interfaces. Comput Mech 72, 1009–1027 (2023). https://doi.org/10.1007/s00466-023-02325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02325-8

Keywords

Navigation