Skip to main content
Log in

Thirty Years of the Finite Volume Method for Solid Mechanics

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Since early publications in the late 1980s and early 1990s, the finite volume method has been shown suitable for solid mechanics analyses. At present, there are several flavours of the method, which can be classified in a variety of ways, such as grid arrangement (cell-centred vs. staggered vs. vertex-centred), solution algorithm (implicit vs. explicit), and stabilisation strategy (Rhie–Chow vs. Jameson–Schmidt–Turkel vs. Godunov upwinding). This article gives an overview, historical perspective, comparison and critical analysis of the different approaches where a close comparison with the de facto standard for computational solid mechanics, the finite element method, is given. The article finishes with a look towards future research directions and steps required for finite volume solid mechanics to achieve more widespread acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Adapted from [25, 29, 155]. (Color figure online)

Fig. 9

Figure adapted from Hassan [406]. (Color figure online)

Fig. 10

Figure adapted from Bailey and Cross [24]. (Color figure online)

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Adapted from Lee et al. [27]. (Color figure online)

Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Runchal AK (2017) Tributes to an exceptional life: D. Brian Spalding, 9 January 1923–27 November 2016. Available at https://www.astfe.org/doc/Brian_Spalding-Tributes_to_an_Exceptional_Life.pdf

  2. Demirdžić I, Martinović D, Ivanković A (1988) Numerical simulation of thermal deformation in welded workpiece. Zavarivanje, 31:209–219 (in Croatian). English translation available at https://www.researchgate.net/profile/Alojz_Ivankovic/publication/296148474_Numerical_simulation_of_thermal_deformation_in_welded_workpiece/links/5d07642ba6fdcc39f12219eb/Numerical-simulation-of-thermal-deformation-in-welded-workpiece.pdf

  3. Demirdžić I, Martinović D (1993) Finite volume method for thermo-elasto-plastic stress analysis. Comput Methods Appl Mech Eng 109:331–349

    Article  MATH  Google Scholar 

  4. Bailey C, Fryer YD, Cross M, Chow P (1991) Predicting the deformation of castings in moulds using a control volume approach on unstructured meshes. In: Cross M, Pittman JFT, Wood RD (eds) Mathematical modelling for materials processing: based on the proceedings of a conference on mathematical modelling of materials processing, organized by the Institute of Mathematics and its Applications, University of Bristol, September, 1991

  5. Fryer YD, Bailey C, Cross M, Lai C-H (1991) A control volume procedure for solving the elastic stress–strain equations on an unstructured mesh. Appl Math Model 15:639–645

    Article  MATH  Google Scholar 

  6. Zienkiewicz OC, Oñate E (1991) Finite volumes vs finite elements: is there really a choice? Nonlinear Computational Mechanics. State of the Art, pp 240–254

  7. Cross M, Bailey C, Chow P, Peircleous K (1992) Towards an integrated control volume unstructured mesh code for the simulation of all macroscopic processes involved in shape casting. In: Wood Chenot RD, Zienkiewicz OC (eds) Numerical methods in industrial processes NUMIFORM 92. Belkema, Rotterdam, pp 787–792

  8. Oñate E, Cervera M, Zienkiewicz OC (1992) A study of the finite volume format for structural mechanics. Technical report, Internal Report Publication No. 15, CIMNE, Barcelona

  9. Cross M (1993) Development of novel computational technique for the next generation of software tools for casting simulation. In: Katgerman L, Piwonka TS, Voler VR (eds) Modelling of casting, welding and advanced solidification processes VI, TMS, pp 115–126

  10. Fryer YD, Bailey C, Cross M, Chow P (1993) Predicting micro-porosity in shape casting using an integrated control volume unstructured mesh framework. In: Voler VR, Piwonka TS, Katgerman L (eds) Modelling of casting, welding and advanced solidification processes VI, pp 143–152

  11. Idelsohn SR, Oñate E (1994) Finite volumes and finite elements: two ‘good friends’. Int J Numer Methods Eng 37:3323–3341

    Article  MATH  Google Scholar 

  12. Oñate E, Cervera M, Zienkiewicz OC (1994) A finite volume format for structural mechanics. Int J Numer Methods Eng 37:181–201

    Article  MATH  Google Scholar 

  13. Beale SB, Elias SR (1990) Numerical solution of two-dimensional elasticity problems by means of a SIMPLE-based finite-difference scheme. Technical report, Institute for Mechanical Engineering, National Research Council, Ottawa, Ont. TR-LT-020 (NRC No. 32090)

  14. Beale SB, Elias SR (1990) Stress distribution in a plate subject to uniaxial loading. PHOENICS J Comput Fluid Dyn 3(3):255–287

    Google Scholar 

  15. Bukhari KM, Qin HQ, Spalding DB (1990) Progress report (to Rolls-Royce Ltd) on the calculation of thermal stresses in bodies of revolution. Technical report, CHAM Ltd

  16. Hattel JH, Hansen PN (1990) FDM solutions of the thermoelastic equations using a staggered grid. In: Danish–German–Polish workshop on application of computer methods in practice, Warsaw, Poland

  17. Bukhari KM, Hamill IS, Qin HQ, Spalding DB (1991) Stress-analysis simulations in PHOENICS. Technical report, CHAM Ltd

  18. Hattel JH (1992) Analysis of thermal induced stresses in die molds. In: Lacaze J, Cross JT, Rappaz M, Sciama G, Svensson I (eds) Examples of European expertise in the computer simulation of solidification and casting. B-18, Ecole de Mines, Nancy, France

  19. Hattel JH, Hansen PN, Hansen LF (1993) Analysis of thermal induced stresses in die casting using a novel control volume technique. In: Voller VR, Piwonka TS, Katgerman L (eds) Modelling of casting, welding and advanced solidification processes VI, TMS, Palm Coast, Florida, USA, pp 585–592

  20. Sevilla R, Giacomini M, Huerta A (2018) A face-centred finite volume method for second-order elliptic problems. Int J Numer Methods Eng https://doi.org/10.1002/nme.5833

  21. Sevilla R, Giacomini M, Huerta A (2018) A locking-free face-centred finite volume (FCFV) method for linear elasticity. Preprint arXiv:1806.07500v1 [math.NA]

  22. Ebrahimnejad M, Fallah N, Khoei AR (2014) New approximation functions in the meshless finite volume method for 2D elasticity problems. Eng Anal Boundary Elem 46:10–22

    Article  MathSciNet  MATH  Google Scholar 

  23. Fallah N, Delzendeh M (2018) Free vibration analysis of laminated composite plates using meshless finite volume method. Eng Anal Boundary Elem 88:132–144

    Article  MathSciNet  MATH  Google Scholar 

  24. Bailey C, Cross M (1995) A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh. Int J Numer Methods Eng 38:1757–1776

    Article  MATH  Google Scholar 

  25. Cardiff P, Tuković Ž, Jasak H, Ivanković A (2016) A block-coupled finite volume methodology for linear elasticity and unstructured meshes. Comput Struct 17:100–122. https://doi.org/10.1016/j.compstruc.2016.07.004

    Article  Google Scholar 

  26. Kluth G, Després B (2010) Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J Comput Phys 229:9092–9118

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee CH, Gil AJ, Bonet J (2013) Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Comput Struct 118:13–38

    Article  Google Scholar 

  28. Haider J, Lee CH, Gil AJ, Bonet J (2017) A first order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred total Lagrangian scheme. Int J Numer Methods Eng 109:407–456

    Article  MathSciNet  Google Scholar 

  29. Demirdžić I, Muzaferija S (1995) Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput Methods Appl Mech Eng 125:235–255

    Article  Google Scholar 

  30. Cardiff P, Tuković Ž, De Jaeger P, Clancy M, Ivanković A (2016) A Lagrangian cell-centred finite volume method for metal forming simulation. Int J Numer Methods Eng 109(13:1777–1803. https://doi.org/10.1002/nme.5345

    Article  MathSciNet  MATH  Google Scholar 

  31. Aguirre M, Gil AJ, Bonet J, Carre AA (2014) A vertex centred finite volume Jameson–Schmidt–Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics. J Comput Phys 259:672–699

    Article  MathSciNet  MATH  Google Scholar 

  32. LeVeque R (2004) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Google Scholar 

  33. Baliga BR, Atabaki N (2009) Control-volume-based finite-difference and finite-element methods. In: Handbook of numerical heat transfer, vol 22, pp 191–224

  34. Courant R, Friedrichs K, Lewy H (1928) On the partial difference equations of mathematical physics. Math Annal 100:32–74

    Article  MATH  Google Scholar 

  35. Demirdžić I (2015) On the discretization of the diffusion term in finite-volume continuum mechanics. Numer Heat Transf Part B Fundam Int J Comput Methodol 68(1):1–10. https://doi.org/10.1080/10407790.2014.985992

    Article  Google Scholar 

  36. Maneeratana K (2000) Development of the finite volume method for non-linear structural applications. PhD thesis, Imperial College, London

  37. Vaz M Jr, Mu noz Rojas PA, Filippini G (2009) On the accuracy of nodal stress computation in plane elasticity using finite volumes and finite elements. Comput Struct 87:1044–1057

    Article  Google Scholar 

  38. Cavalcante MAA, Pindera M-J, Khatam H (2012) Finite-volume micromechanics of periodic materials: past, present and future. Compos B Eng 43:2521–2543

    Article  Google Scholar 

  39. Van Eck NJ, Waltman L (2007) VOS: a new method for visualizing similarities between objects. In: Advances in data analysis: proceedings of the 30th annual conference of the German classification society. Springer, Berlin, pp 299–306

  40. Trangenstein JA, Colella P (1991) A higher-order Godunov method for modeling finite deformation in elastic–plastic solids. Commun Pure Appl Math 44:41–100

    Article  MathSciNet  MATH  Google Scholar 

  41. Demirdžić I, Muzaferija S (1994) Finite volume method for stress analysis in complex domains. Int J Numer Methods Eng 37:3751–3766

    Article  MATH  Google Scholar 

  42. Dioh N, Ivanković A, Leevers P, Williams JG (1994) The high strain rate behaviour of polymers. J Phys IV, 04 (C8). https://doi.org/10.1051/jp4:1994818

  43. Rente CJ, Oliveira PJ (2000) Extension of a finite volume method in solid stress analysis to cater for non-linear elasto-plastic effects. In: Tassoulas JL (ed) Proceedings of EM 14th engineering mechanics conference. University of Texas at Austin, USA

  44. Teskeredžić A, Demirdžić I, Muzaferija S (2002) Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems. Numer Heat Transf Part B Fundam 42:437–459

    Article  Google Scholar 

  45. Teskeredžić A (2004) Application of the finite volume method to casting problems. PhD thesis, University of Sarajevo

  46. Bašić H, Demirdžić I, Muzaferija S (2005) Finite volume method for simulation of extrusion processes. Int J Numer Methods Eng 62:475–494

    Article  MATH  Google Scholar 

  47. Martins MM, Bressan JD, Button ST, Ivanković A (2010) Extrusion process by finite volume method using OpenFOAM software. In: Chastel Chinesta Y, El Mansori M (eds) International conference on advances in material and processing technologies—AMPT2010. American Institute of Physics, Paris, France, pp 1461–1466

  48. Bressan JD, Martins MM, Vaz M Jr (2010) Stress evolution and thermal shock computation using the finite volume method. J Therm Stresses 33:533–558

    Article  Google Scholar 

  49. Leonard M, Murphy N, Karač A, Ivanković A (2012) A numerical investigation of spherical void growth in an elastic–plastic continuum. Comput Mater Sci 64:38–40

    Article  Google Scholar 

  50. Bressan JD, Martins MM, Button ST (2015) Analysis of aluminium hot extrusion by finite volume method. Mater Today Proc 2(10, Part A):4740–4747

  51. Martins MM, Bressan JD, Button ST (2016) Analysis of aluminum extrusion in a \(90^\circ\) die by finite volume method. Adv Mater Res 1135:153–160

    Google Scholar 

  52. Martins MM, Bressan JD, Button ST (2017) Finite volume analysis with the maccormack method applied to metal flow in forward extrusion. Univ J Mech Eng 5:1–8

    Article  Google Scholar 

  53. Cardiff P, Tang T, Tukovic Z, Jasak H, Ivankovic A, De Jaeger P (2017) An Eulerian-inspired Lagrangian finite volume method for wire drawing simulations. In: IUTAM symposium on multi-scale fatigue, fracture and damage of materials in harsh environments, Galway, Ireland. National University of Ireland Galway

  54. Bressan JD, Martins MM, Button ST (2017) Analysis of metal extrusion by the finite volume method. Proc Eng 207:425–430

    Article  Google Scholar 

  55. Zarrabi K, Basu A (1999) An axisymmetric finite volume formulation for creep analysis. J Mech Behav Mater 10:325–340

    Article  Google Scholar 

  56. Zarrabi K, Basu A (2000) A finite volume element formulation for solution of elastic axisymmetric pressurized components. Int J Press Vessels Pip 77:479–484

    Article  Google Scholar 

  57. Džaferović E, Ivanković A, Demirdžić I (2000) Finite volume modelling of linear viscoelastic deformation. In: Proceedings of 3rd congress of Croatian society of mechanics, Dubrovnik, Croatia

  58. Demirdžić I, Džaferović E, Ivanković A (2005) Finite-volume approach to thermoviscoelasticity. Numer Heat Transf Part B Fundam 47:213–237

    Article  Google Scholar 

  59. Das S, Mathur SR, Murthy JY (2012) Finite-volume method for creep analysis of thin RF MEMS devices using the theory of plates. Numer Heat Transf Part B Fundam 61:71–90

    Article  Google Scholar 

  60. Safari A, Tuković Ž, Cardiff P, Walter M, Casey E, Ivanković A (2016) Interfacial separation of a mature biofilm from a glass surface—a combined experimental and cohesive zone modelling approach. J Mech Behav Biomed Mater 54:205–218

    Article  Google Scholar 

  61. Demirdžić I, Ivanković A, Martinović D, Muzaferija S (1994) Numerical method for solving linear and non-linear solid body problems. In: Proceedings of 1st Congress of Croatian Society of Mechanics, Pula, Croatia

  62. Demirdžić I (1996) Finite volumes in solid mechanics. In: NAFEMS ASME Seminar—alternative strategies in computational mechanics, London

  63. Osman H, Ahmad S, Arshad KA (2011) A one-dimensional simulation of an electrofusion welding process. In: International conference on modeling, simulation and applied optimization (ICMSAO), vol 4, pp 1–5 (2011)

  64. Junior HGD, Xavier CR, de Castro JA, Campos MF, Palmeira AA, Habibe AF (2013) Mathematical modeling and experimental investigation of the stress evolution at the steel welding. Cadernos UniFOA 8:59–66

    Google Scholar 

  65. Bibin KS, Ramarajan A (2013) Unstructured finite volume approach for 3-D unsteady thermo-structural analysis using bi-conjugate gradient stabilized method. In J Innov Res Sci Eng Technol 2:1389–1400

    Google Scholar 

  66. Martinović D, Horman I (1998) Numerical simulation of clay bricks drying process. In: II Medjunarodni naučno-stručni skup Proizvodnja i prerada nemetalnih mineralnih sirovina i njihova primjena u industriji, Zenica, Bosnia and Herzegovina (in Bosnian)

  67. Demirdžić I, Horman I, Martinović D (2000) Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body. Comput Methods Appl Mech Eng 190:1221–1232

    Article  MATH  Google Scholar 

  68. Martinović D, Horman I (2000) Drying induced stresses in clay bricks an hygro-thermo-elastic model. In: International scientific and expert symposium nonmetal inorganic materials, Zenica, Bosnia-Herzegovina, pp 249–257 (2000)

  69. Martinović D, Horman I, Demirdžić I (2001) Numerical and experimental analysis of wood drying process. Wood Sci Technol 35:143–156

    Article  Google Scholar 

  70. Martinović D (2002) A numerical method for analysis of thermo-deformational processes during the welding. PhD thesis, University of Sarajevo (in Bosnian)

  71. Horman I, Martinović D, Hajdarević S (2008) Numerical analysis of a phenomena in the wood caused by heat. Moisture or External Load, vol 21. In: Proceedings of international scientific conference: challanges in forestry and wood technology in the University of Zagreb, Faculty of Forestry, Zageb, pp 31–34

  72. Martinović D, Horman I, Hajdarević S (2008) Stress distribution in wooden corner joints. Strojarstvo 50:193–204

    Google Scholar 

  73. Horman I, Martinović D, Hajdarević S (2009) Finite volume method for analysis of stress and strain in wood. Drv Ind 60:27–32

    Google Scholar 

  74. Horman I, Hajdarević S, Martinović D, Vukas N (2010) Numerical analysis of stress and strain in a wooden chair. Drv Ind 61:151–158

    Google Scholar 

  75. Horman I, Martinović D, Bijelonja I, Hajdarević S (2012) Wood subjected to hydro-thermal and/or mechanical loads. In: Petrova R (ed) Finite volume method—powerful means of engineering design

  76. Fu R (2018) Thermo-mechanical coupling for ablation. PhD thesis, University of Kentucky

  77. Holzmann T, Ludwig A, Raninger P (2018) Yield strength prediction in 3D during local heat treatment of structural A356 alloy components in combination with thermal-stress analysis. In: Lambotte G, Lee J, Allanore A, Wagstaff S (eds) Materials processing fundamentals. The minerals, metals and materials series

  78. Tang T, Hededal O, Cardiff P (2015) On finite volume method implementation of poro-elasto-plasticity soil model. Int J Numer Anal Methods Geomech 39:1410–1430. https://doi.org/10.1002/nag.2361

    Article  Google Scholar 

  79. Bryant EC, Hwang J, Sharma MM (2015) Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model. In: SPE hydraulic fracturing technology conference, The Woodlands, Texas

  80. Cardiff P, Manchanda R, Bryant EC, Lee D, Ivanković A, Sharma MM (2015) Simulation of fractures in OpenFOAM: from adhesive joints to hydraulic fractures. In: 10th OpenFOAM workshop, University of Michigan, Ann Arbor, MI, USA

  81. Cardiff P, Manchanda R, Bryant EC, Ivanković A, Sharma MM (2015) Finite volume method for the simulation of hydraulic fractures. In: Joint symposium of Irish mechanics society and Irish society for scientific and engineering computation advances in mechanics. University College Dublin, Dublin, Ireland

  82. Lee D, Cardiff P, Bryant EC, Manchanda R, Wang H, Sharma AMM (2015) New model for hydraulic fracture growth in unconsolidated sands with plasticity and leak-off. In: SPE annual technical conference and exhibition, pp 28–30

  83. Elsafti H, Oumeraci H (2016) A numerical hydro-geotechnical model for marine gravity structures. Comput Geotech 79:105–129. https://doi.org/10.1016/j.compgeo.2016.05.025

    Article  Google Scholar 

  84. Manchanda R, Bryant EC, Bhardwaj P, Cardiff P, Sharma MM (2017) Strategies for effective stimulation of multiple perforation clusters in horizontal wells. SPE, Preprint, pp 28–30. https://doi.org/10.2118/179126-PA

  85. Asadollahi M (2017) Finite volume method for poroelasticity. Master’s thesis, Delft University of Technology

  86. Fainberg J, Leister HJ (1996) Finite volume multigrid solver for thermo-elastic stress analysis in anisotropic materials. Comput Methods Appl Mech Eng 137:167–174

    Article  MATH  Google Scholar 

  87. Horman I (1999) Finite volume method for analysis of timber drying. PhD thesis, University of Sarajevo (in Bosnian)

  88. Cardiff P, Karač A, Ivanković A (2014) A large strain finite volume method for orthotropic bodies with general material orientations. Comput Methods Appl Mech Eng 268:318–335. https://doi.org/10.1016/j.cma.2013.09.008

    Article  MathSciNet  MATH  Google Scholar 

  89. Golubović A, Demirdžić I, Muzaferija S (2017) Finite volume analysis of laminated composite plates. Int J Numer Methods Eng 109(11):1607–1620

    Article  MathSciNet  MATH  Google Scholar 

  90. Tuković Ž, Ivanković A, Karač A (2012) Finite-volume stress analysis in multi-material linear elastic body. Int J Numer Methods Eng 93:400–419

    Article  MathSciNet  MATH  Google Scholar 

  91. Carolan D, Tuković Ž, Murphy N, Ivanković A (2013) Arbitrary crack propagation in multi-phase materials using the finite volume method. Comput Mater Sci 69:153–159

    Article  Google Scholar 

  92. Cardiff P (2012) Development of the finite volume method for hip joint stress analysis. PhD thesis, University College Dublin. https://www.researchgate.net/publication/262772501_Development_of_the_Finite_Volume_Method_for_Hip_Joint_Stress_Analysis

  93. Greenshields CJ, Weller HG, Ivanković A (1999) The finite volume formulation for fluid–structure interaction. In: Vilsmeirer Haenel R, Benkhaldoun F (eds) Finite volumes for complex applications, II—problems and perspectives. Hermes Science, pp 467–474

  94. Greenshields CJ, Weller HG, Ivanković A (1999) The finite volume method for coupled fluid flow and stress analysis. Comput Model Simul Eng 4:213–218

    Google Scholar 

  95. Bijelonja I, Demirdžić I, Muzaferija S (2005) A finite volume method for large strain analysis of incompressible hyperelastic materials. Int J Numer Methods Eng 64:1594–1609

    Article  MATH  Google Scholar 

  96. Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid–structure interaction in flexible tubes. Int J Numer Methods Eng 64:1575–1593

    Article  MathSciNet  MATH  Google Scholar 

  97. Bijelonja I, Demirdžić I, Muzaferija S (2006) A finite volume method for incompressible linear elasticity. Comput Methods Appl Mech Eng 195:6378–6390

    Article  MATH  Google Scholar 

  98. Giannopapa CG, Papadakis G (2006) New formulations of the dynamic equations of elastic solids suitable for a unified methodology for fluid–structure interaction problems. Comput Methods Appl Mech Eng

  99. Giannopapa CG, Papadakis G (2008) Linear stability analysis and application of a new solution method of the elastodynamic equations suitable for a unified fluid–structure-interaction approach. ASME J Pressure Vessels Technol 130:31303-1

    Google Scholar 

  100. Bijelonja I, Demirdžić I, Muzaferija S (2017) Mixed finite volume method for linear thermoelasticity at all Poisson’s ratios. Numer Heat Transf Part A Appl 72:215–235

    Article  Google Scholar 

  101. Jasak H, Weller HG (2000) Finite volume methodology for contact problems of linear elastic solids. In: Proceedings of 3rd Congress of Croatian Society of Mechanics. Dubrovnik, Croatia, pp 253–260

  102. Cardiff P, Karač A, Flavin R, FitzPatrick D, Ivanković A (2011) Contact stress analysis in OpenFOAM—application to hip joint bones. In: OpenFOAM Workshop, Penn State University, Penn State, PA, USA

  103. Cardiff P, Karač A, Ivanković A (2011) Development of a finite volume methodology for linear elastic contact problems. In: 21st international workshop on computational mechanics of materials, IWCMM, Limerick, Limerick, Ireland

  104. Cardiff P, Karač A, Ivanković A (2012) Development of a finite volume contact solver based on the penalty method. Comput Mater Sci 64:283–284

    Article  Google Scholar 

  105. Cardiff P, Karač A, FitzPatrick D, Flavin R, Ivanković A (2014) Development of a hip joint model for finite volume simulations. J Biomech Eng 136:1–8. https://doi.org/10.1115/1.4025776

    Article  Google Scholar 

  106. Maneeratana K, Ivanković A (1999) Finite volume method for structural applications involving material and geometrical non-linearities. In: European council of computational mechanics Technische Universität München, Proceedings of the European conference on computational mechanics (ECCM’99), pp 874–875

  107. Maneeratana K, Ivanković A (1999) Finite volume method for geometrically non-linear stress analysis applications. In: Proceedings of the seventh annual conference of the association for computational mechanics in engineering (ACME’1999)

  108. Maneeratana K, Ivanković A (1999) Finite volume method for large deformation with linear hypoelastic materials. In: Vilsmeier R, Benkhaldoun F (eds) second international symposium on finite volumes for complex applications (FVCA II) for complex applications II: problems and perspectives. Hermes Science Publication, University Duisburg, Germany, pp 459–466

  109. Maneeratana K, Ivanković A (2000) Modelling of high strain rate behaviour of a series 7108 aluminium alloy. In: Proceedings of the 14th conference of the mechanical engineering network of Thailand, pp 227–233

  110. Bašić H (2012) Application of the finite volume method to the analysis of plastic metal flow in extrusion technologies. PhD thesis, University of Sarajevo (in Bosnian)

  111. Bijelonja I (2002) Finite volume method for incremental analysis of small and large thermo-elasto-plastic deformations. PhD thesis, University of Sarajevo (in Bosnian)

  112. Tuković Ž, Jasak H (2007) Updated Lagrangian finite volume solver for large deformation dynamic response of elastic body. Trans FAMENA 31:55–70

    Google Scholar 

  113. Tuković Ž, Jasak H (2007) FVM for fluid–structure interaction with large structural displacements. In: 2nd OpenFOAM Workshop, Zagreb, Croatia

  114. Cardiff P, Karač A, Tuković Ž, Ivanković A (2012) Development of a finite volume based structural solver for large rotation of non-orthogonal meshes. In: 7th OpenFOAM Workshop, Darmstadt, Germany

  115. Cardiff P, Karač A, Tuković Ž, Ivanković A (2013) An open-source finite method for computational solid mechanics. In: Joint symposium of Irish mechanics society and Irish society for scientific and engineering computation. University College Dublin, Dublin, Ireland

  116. Cardiff P, Tuković Ž, Karač A, Ivanković A (2014) Nonlinear solid mechanics in OpenFOAM. In: 9th OpenFOAM Workshop. University of Zagreb, Croatia

  117. Liu Q, Ming P-J, Zhang W-P (2018) Research on the nonlinear finite volume numerical method for the large rotating of disk. J Harbin Eng Univ 39:1012–1018

    MATH  Google Scholar 

  118. Ivanković A, Demirdžić I, Williams JG, Leevers PS (1993) A new numerical method for analysing dynamic fracture problems. In: ESIS symposium on impact and dynamic fracture of polymers and composites, Potro Cervo, Sardinia, Italy

  119. Ivanković A, Demirdžić I, Williams JG, Leevers PS (1994) Application of the finite volume method to the analysis of dynamic fracture problems. Int J Fract 66:357–371

    Article  Google Scholar 

  120. Ivanković A, Muzaferija S, Demirdžić I (1997) Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test. Comput Mech 20:46–52

    Article  MATH  Google Scholar 

  121. Ivanković A, Venizelos GP (1998) Rapid crack propagation in plastic pipe: predicting full-scale critical pressure from S4 test results. Eng Fract Mech 59:607–622

    Article  Google Scholar 

  122. Ivanković A (1999) Finite volume modelling of dynamic fracture problems. Comput Model Simul Eng 4:227–235

    Google Scholar 

  123. Ivanković A, Hillmansen S (2001) Evoluton of dynamic fractures in PMMA. Plast Rubber Compos 30:88–93

    Article  Google Scholar 

  124. Stylianou V, Ivanković A (2002) Finite volume analysis of dynamic fracture phenomena I: a node release methodology. Int J Fract 113:107–123

    Article  Google Scholar 

  125. Stylianou V, Ivanković A (2002) Finite volume analysis of dynamic fracture phenomena II: a cohesive zone type methodology. Int J Fract 113:125–151

    Article  Google Scholar 

  126. Ivanković A, Williams JG, Pandya KC (2004) Crack growth predictions in polyethylene using measured traction–separation curves. Eng Fract Mech, pp 657–668

  127. Rager A, Williams JG, Ivanković A (2005) Numerical analysis of the three point bend impact test for polymers. Int J Fract 135(1–4):199–215

    Article  Google Scholar 

  128. Murphy N, Ivanković A (2005) The prediction of dynamic fracture evolution in PMMA using a cohesive zone model. Eng Fract Mech 72:861–875

    Article  Google Scholar 

  129. Murphy N, Ali M, Ivanković A (2006) Dynamic crack bifurcation in PMMA. Eng Fract Mech 73(16):2569–2587

    Article  Google Scholar 

  130. Tropša V, Georgiou I, Ivanković A, Kinloch AJ, Williams JG (2006) OpenFOAM in non-linear stress analysis: modelling of adhesive joints. In: 1st OpenFOAM workshop, Zagreb, Croatia

  131. Tuković Ž (2010) Arbitrary crack propagation model in OpenFOAM. Technical report, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, in association with the School of Mechanical and Materials Engineering, University College Dublin

  132. Karač A, Blackman BRK, Cooper V, Kinloch AJ, Rodriguez Sanchez S, Teo WS, Ivanković A (2011) Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate. Eng Fract Mech 78:973–989

  133. Ivanković A, Tropša V, Williams JG (1997) Finite volume modelling of residual stresses in cast plastic slabs. In: Fifth international conference on residual stresses, Linkoping, Sweden, pp 392–399

  134. Tropša V, Ivankovic A, Williams JG (2000) Predicting residual stresses due to solidification in cast plastic plates. Plast Rubber Compos 29(9):468–474. https://doi.org/10.1179/146580100101541319

    Article  Google Scholar 

  135. Sato A, Ohnaka I, Iwane J (2006) Stress analysis by finite volume method for prediction of porosity and deformation defects of spheroidal graphite castings. J Jpn Found Eng Soc 78:231–237 (in Japanese)

    Google Scholar 

  136. Teskeredžić A, Demirdžić I, Muzaferija S (2015) Numerical method for calculation of complete casting process—part I: theory. Numer Heat Transf Part B Fundam An Int J Comput Methodol 68:295–316

    Article  Google Scholar 

  137. Teskeredžić A, Demirdžić I, Muzaferija S (2015) Numerical method for calculation of complete casting process—part II: validation and application. Numer Heat Transf Part B Fundam An Int J Comput Methodol 68:317–335

    Article  Google Scholar 

  138. Henry FS, Collins MW (1993) A novel predictive model with compliance for arterial flows. BED-vol 26, Advances in Bioengineering. ASME

  139. Henry FS, Collins MW (1993) Prediction of transient wall movement of an incompressible elastic tube using finite volume procedure. In: Proceedings of BIOMED93, Bath, UK

  140. Greenshields CJ, Vanizelos GP, Ivanković A (2000) A fluid-structure model for fast brittle fracture in plastic pipes. J Fluids Struct 14:221–234

    Article  Google Scholar 

  141. Ivanković A, Karač A, Dendrinos E, Parker K (2001) Blood flow in deformable arteries: the finite volume method for fluid–structure interaction problem. In: Proceedings of the 9th ACME conference on computational mechanics in engineering, Birmingham, UK

  142. Schäfer M, Teschauer I (2001) Numerical simulation of coupled fluid–solid problems. Comput Methods Appl Mech Eng 190:3645–3667

    Article  MATH  Google Scholar 

  143. Schäfer M, Teschauer I, Kadinski L, Selder M (2002) A numerical approach for the solution of coupled fluid–solid and thermal stress problems in crystal growth processes. Comput Mater Sci 24:409–419

    Article  Google Scholar 

  144. Ivanković A, Karač A, Dendrinos E, Parker K (2002) Towards early diagnosis of artherosclerosis: the finite volume method for fluid–structure interaction. Biorheology 39:401–407

    Google Scholar 

  145. Torlak M, Muzaferija S (2002) Finite volume approach to computation of elastic plates and their interaction with fluid flows. In: Finite volumes for complex applications III—problems and perspectives. Kogan Page Science

  146. Torlak M, Muzaferija S, Perić M (2002) Application of a finite volume method to the computation of interaction between thin linearly elastic structures and incompressible fluid flows. In: VDI-Berichte 1862, VDI Tagung Fluid-Struktur-Wechselwirkung, Wiesloch

  147. Kovačević A, Stošić N, Smith IK, Numerical A (2004) A numerical study of fluid–solid interaction in screw compressors. Int J Comput Appl Technol 21:148–158. https://doi.org/10.1504/IJCAT.2004.006651

    Article  Google Scholar 

  148. Stošić N, Smith I, Kovačević A (2005) Screw compressors. Springer, Berlin

    Google Scholar 

  149. Shaw G, Stone T (2005) Finite volume methods for coupled stress/fluid flow in commercial reservoir simulations. In: SPE reservoir simulation symposium, Houston, Texas. SPE 93430

  150. Torlak M (2006) A finite-volume method for coupled numerical analysis of incompressible fluid flow and linear deformation of elastic structures. PhD thesis, Technischen Universitaet Hamburg-Harburg

  151. Kovačević A, Stošić N, Smith IK (2006) Numerical simulation of combined screw compressor–expander machines for use in high pressure refrigeration systems. Simul Model Pract Theory 14:1143–1154

    Article  Google Scholar 

  152. Kovačević A, Stošić N, Mujić E, Smith IK (2007) CFD integrated design of screw compressors. J Eng Appl Comput Fluid Mech 1:96–108

    Google Scholar 

  153. Stošić N, Smith I, Kovačević A (2007) Screw compressors. three dimensional computational fluid dynamics and solid–fluid interaction. Springer, Berlin

    Google Scholar 

  154. Papadakis G (2008) A novel pressure–velocity formulation and solution method for fluid–structure interaction problems. J Comput Phys 227:3383–3404

    Article  MathSciNet  MATH  Google Scholar 

  155. Jasak H, Jemcov A, Tuković Ž (2007) OpenFOAM: A C++ library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics, Dubrovnik, Croatia

  156. Kanyanta V, Ivanković A, Karač A (2009) Validation of a fluid–structure interaction numerical model for predicting flow transients in arteries. J Biomech 42:1705–1712

    Article  Google Scholar 

  157. Jagad P, Puranik BP, Date AW (2011) A finite volume procedure on unstructured meshes for fluid-structure interaction problems. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 5:1406–1412

    Google Scholar 

  158. Wiedemair W, Tuković Ž, Jasak H, Poulikakos D, Kurtcuoglu V (2012) On ultrasound-induced microbubble oscillation in acapillary blood vessel and its implications for the blood–brain barrier. Phys Med Biol 57:1019–1045

    Article  Google Scholar 

  159. Habchi C, Russeil S, Bougeard D, Harion J-L, Lemenand T, Ghanem A, Della Valle D, Peerhossaini H (2013) Partitioned solver for strongly coupled fluid–structure interaction. Comput Fluids 71:306–319

    Article  MathSciNet  MATH  Google Scholar 

  160. Tuković Ž, Cardiff P, Ivanković A, Karač A (2014) OpenFOAM library for fluid–structure interaction. In: 9th OpenFOAM Workshop, Zagreb, Croatia, Zagreb, Croatia

  161. Smith I, Stošić N, Kovačević A (2014) Power recovery from low grade heat sources by the use of screw expanders. Chandos Publishing

  162. Šekutkovski B, Kostić I, Simonović A, Cardiff P, Jazarević V (2016) Three-dimensional fluid–structure interaction simulation with a hybrid RANS-LES turbulence model for applications in transonic flow domain. Aerosp Sci Technol 49:1–16

    Article  Google Scholar 

  163. Jagad P (2016) A numerical procedure for elastic solids. GIT-J Eng Technol 9:113–124

    Google Scholar 

  164. Cardiff P, Karač A, De Jaeger P, Jasak H, Nagy J, Ivanković A, Tuković Ž (2017) Towards the development of an extendable solid mechanics and fluid–solid interactions toolbox for OpenFOAM. In: 12th OpenFOAM Workshop, vol 12, University of Exeter, UK

  165. Jagad P, Puranik BP, Date AW (2017) A numerical analysis of fluid–structure interaction problem with a flow channel embedded in a structural material. Proc Indian Natl Sci Acad 83:655–667

    Google Scholar 

  166. Jagad P, Puranik BP, Date AW (2018) A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis. Int J Comput Methods Eng Sci Mech. https://doi.org/10.1080/15502287.2018.1434839

    Article  MathSciNet  Google Scholar 

  167. Demirdžić I, Ivanković A (1997) Finite volume approach to modelling of plates. In: Proceedings of 2nd Congress of Croatian Society of mechanics, Brac, Croatia, pp 101–108

  168. Fallah N (2004) A cell vertex and cell centred finite volume method for plate bending analysis. Comput Methods Appl Mech Eng 193:3457–3470

    Article  MATH  Google Scholar 

  169. Fallah N (2006) A finite volume method for plate buckling analysis. In: Mota Soares CA et al. (eds) III European conference on computational mechanics, solids, structures and coupled problems in engineering, Lisbon, Portugal, pp 5–8

  170. Fallah N, Hatami F (2006) A displacement formulation based on finite volume method for analysis of Timoshenko beam. In: Proceedings of the 7th international conference on civil engineering Tehran, Iran, pp 8–10

  171. Fallah N (2006) On the use of shape functions in the cell centered finite volume formulation for plate bending analysis based on Mindlin–Reissner plate theory. Comput Struct 84:1664–1672

    Article  Google Scholar 

  172. Fallah N, Hatami F (2006) Extension of the finite volume method for instability analysis of columns with shear effects. In: Proceedings of the eighth international conference on computational structures technology, Stirlingshire, Scotland. Civil-Comp Press. Paper 192

  173. Hatami F, Fallah N, Pourzeynali S (2006) Application of the finite volume method for shell analysis: a membrane study. In: Topping BHV, Montero G, Montenegro R (eds) Proceedings of the eighth international conference on computational structures technology. Civil-Comp Press, Stirlingshire, UK. https://doi.org/10.4203/ccp.83.160

  174. Isić S, Doleček V, Karabegović I (2007) A comparison between finite element and finite volume methods on the problem of stability of Timoshenko beam. In: The 12th international conference on problems of material engineering, Jasna, Slovakia

  175. Isić S, Doleček V, Karabegović I (2007) Numerical and experimental analysis of postbuckling behaviour of prismatic beam under displacement dependent loading. In: Proceedings of the first Serbian congress on theoretical and applied mechanics, Kopaonik, Serbia

  176. Isić S, Doleček V, Karabegović I (2007) A comparison of finite element and finite volume method on stability analysis of rectangular plate. In: Doleček Karabegović V, Jurković M (eds) I. 6th international scientific conference on production engineering, development and modernization of production, RIM Bihac, BiH

  177. Isić S (2008) Numerical and experimental analysis of nonlinear stability phenomena in elastic systems. PhD thesis, University of Bihac, Bosnia and Herzegovina (in Bosnian)

  178. Fallah N (2013) Finite volume method for determining the natural characteristics of structures. J Eng Sci Technol 8:93–106

    Google Scholar 

  179. Fallah N, Parayandeh-Shahrestany A (2014) A novel finite volume based formulation for the elasto-plastic analysis of plates. Thin-Walled Struct 77:153–164

    Article  Google Scholar 

  180. Fallah N, Ebrahimnejad M (2014) Finite volume analysis of adaptive beams with piezoelectric sensors and actuators. Appl Math Model 38:727–737

    Article  MathSciNet  MATH  Google Scholar 

  181. Jing L-L, Ming P-J, Zhang W-P, Fu L-R, Cao Y-P (2016) Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Compos Struct 138:192–213

    Article  Google Scholar 

  182. Fallah N, Ghanbari A (2017) A displacement finite volume formulation for the static and dynamic analysis of shear deformable circular curved beams. Sci Iran. https://doi.org/10.24200/sci.2017.4259

  183. Fallah N, Parayandeh-Shahrestany A, Golkoubi H (2017) A finite volume formulation for the elasto-plastic analysis of rectangular Mindlin–Reissner plates, a non-layered approach. Civil Eng Infrastruct J 50:293–310

    Google Scholar 

  184. Mohebi B, Kaboudan AR, Yazdanpanah O (2017) Damage detection in beam-like structures using finite volume method. J Rehabil Civ Eng 5:77–92

    Google Scholar 

  185. Fallah N, Ghanbary A (2018) A displacement finite volume formulation for the static and dynamic analysis of shear deformable curved beams. Sci Iran 25(3):999–1014

    Google Scholar 

  186. Amraei A, Fallah N (2018) A cell-centered finite volume formulation for the calculation of stress intensity factors in Mindlin–Reissner cracked plates. Civ Eng J 3:1366–1385

    Article  Google Scholar 

  187. Tuković Ž, De Jaeger P, Cardiff P, Ivanković A (2019) A finite volume solver for geometrically exact Simo–Reissner beams. In: ECCOMAS MSF Thematic conference. Sarajevo, Bosnia and Herzegovina

  188. Das S, Mathur SR, Murthy JY (2011) An unstructured finite-volume method for structure–electrostatic interactions in MEMS. Numer Heat Transf Part B Fundam 60:425–451

    Article  Google Scholar 

  189. Das S, Koslowski M, Mathur SR, Murthy JY, Finite volume method for simulation of creep in RF MEMS devices. In ASME, (2011) International mechanical engineering congress and exposition: nano and micro materials, devices and systems; microsystems integration, vol 11. Denver, Colorado, p 2011

  190. Dioh NN, Ivanković A, Demirdžić I (1995) Dynamic thermo elastic plastic deformation of solids using finite volume technique. In: Oñate E, Owen DRJ (ed) Computational plasticity, fundamentals and applications. Pineridge Press, pp 1947–1957

  191. Dioh NN, Ivanković A, Leevers PS, Williams JG (1995) Stress wave propagation effects in split Hopkinson pressure bar tests. In: Proceedings of The Royal Society; proceedings: mathematical and physical sciences, pp 187–204

  192. Djapic Oosterkamp L, Ivankovic A, Venizelos G (2000) High strain rate properties of selected aluminium alloys. Mater Sci Eng A 278(1):225–235. https://doi.org/10.1016/S0921-5093(99)00570-5

    Article  Google Scholar 

  193. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object orientated techniques. Comput Phys 12:620–631

    Article  Google Scholar 

  194. Jasak H, Weller HG (2000) Application of the finite volume method and unstructured meshes to linear elasticity. Int J Numer Methods Eng 48:267–287

    Article  MATH  Google Scholar 

  195. Suvanjumrat C, Chaichanasiri E (2011) Implementation and validation of finite volume C++ codes for plane stress analysis. In: CST02, The Second TSME, Krabi. International conference on mechanical engineering

  196. Haider J, Lee CH, Gil AJ, Huerta A, Bonet J (2018) An upwind cell centred total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Comput Methods Appl Mech Eng 340:684–727

    Article  MathSciNet  MATH  Google Scholar 

  197. Demirdžić I, Muzaferija S, Perić M (1997) Benchmark solutions of some structural analysis problems using finite-volume method and multigrid acceleration. Int J Numer Methods Eng 40:1893–1908

    Article  Google Scholar 

  198. Cardiff P, Tuković Ž, Jasak H, Ivanković AA (2014) Block-coupled finite volume methodology for linear elasticity. In: 9th OpenFOAM Workshop, vol 9. University of Zagreb, Croatia

  199. González I, Naseri A, Chiva J, Rigola J, Pérez-Segarra CD (2018) An enhanced finite volume based solver for thermoelastic materials in fluid–structure coupled problems. In: 6th European conference on computational mechanics (ECCM 6), 7th European conference on computational fluid dynamics (eCFD 7), Glasgow, UK, 15 June 2018

  200. Fowler BL, Yee RK (2003) Application of finite volume method for solid mechanics. In: Proceedings of the ASME IMECE conference international mechanical engineering congress and RD&D Expo, pp 15–21, November 2003. IMECE2003-44297

  201. Bijelonja I (2011) A numerical method for almost incompressible body problem. In: Katalinić (ed) Proceedings of the 22nd international DAAAM symposium, Vienna, Austria, pp 321–322

  202. Oliveira PJ, Rente CJ (1999) Development and application of a finite volume method for static and transient stress analysis. In: Proceedings of NAFEMS world congress ’99 on effective engineering analysis, pp 297–309

  203. Demirdžić I (2016) A fourth-order finite volume method for structural analysis. Appl Math Model 40:3104–3114

    Article  MathSciNet  MATH  Google Scholar 

  204. Fallah N (2008) A method for calculation of face gradients in two-dimensional cell centred finite volume formulation for stress analysis in solid problems. Sci Iran 15:286–294

    Google Scholar 

  205. Nordbotten JM (2014) Cell-centered finite volume discretizations for deformable porous media. Int J Numer Methods Eng 100:399–418

    Article  MathSciNet  MATH  Google Scholar 

  206. Nordbotten JM (2015) Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J Numer Anal 53:2605–2625

    Article  MathSciNet  MATH  Google Scholar 

  207. Keilegavlen E, Nordbotten JM (2017) Finite volume methods for elasticity with weak symmetry. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5538

    Article  MathSciNet  Google Scholar 

  208. Tuković Ž, Karač A, Cardiff P, Jasak H, Ivanković A (2018) OpenFOAM finite volume solver for fluid–solid interaction. Trans FAMENA 42(3):1–31. https://doi.org/10.21278/TOF.42301

  209. Fallah N (2008) Finite volume based formulations for the analysis of Bernouli and Timoshenko beams. J Numer Simul Eng 1(3):259–268

  210. Golubović A (2017) Finite volume analysis of laminated composite plates. PhD thesis, University of Sarajevo

  211. Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sborn 47:271–306

    MathSciNet  MATH  Google Scholar 

  212. Godunov SK (1962) The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics. Russ Math Surv 17:145–156

    Article  MathSciNet  MATH  Google Scholar 

  213. Trangenstein JA, Pember RB (1992) Numerical algorithms for strong discontinuities in elastic–plastic solids. J Comput Phys 103(1):63–89

    Article  MathSciNet  MATH  Google Scholar 

  214. Trangenstein JA (1994) Second-order Godunov algorithm for two-dimensional solid mechanics. Comput Mech 13:343–359

    Article  MathSciNet  MATH  Google Scholar 

  215. Miller GH, Puckett EG (1996) A high-order Godunov method for multiple condensed phases. J Comput Phys 128:134–164

    Article  MATH  Google Scholar 

  216. Tang H, Sotiropoulos F (1999) A second-order Godunov method for wave problems in coupled solid water gas systems. J Comput Phys 151:790–815

    Article  MathSciNet  MATH  Google Scholar 

  217. Berezovski A, Maugin GA (2001) Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J Comput Phys 168:249–264

    Article  MathSciNet  MATH  Google Scholar 

  218. Howell BP, Ball GJ (2002) A free-Lagrange augmented Godunov method for the simulation of elastic–plastic solids. J Comput Phys 175:128–167

    Article  MATH  Google Scholar 

  219. Berezovski A, Maugin GA (2003) Simulation of wave and front propagation in thermoelastic materials with phase transformation. Comput Mater Sci 28:478–485

    Article  Google Scholar 

  220. Kluth G, Després B (2008) F. V. schemes for hyperelastic–plastic models in finite deformations. In: Reymard B, Hérard J-M (eds) Finite volumes for complex applications V-problems and perspectives. Wiley, London

  221. Carré G, Del Pino S, Després B, Labourasse E (2009) A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J Comput Phys 228:5160–5183

    Article  MathSciNet  MATH  Google Scholar 

  222. Maire P-H, Abgrall R, Breil J, Loubère R, Rebourcet B (2013) A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids. J Comput Phys 235:626–665

    Article  MathSciNet  MATH  Google Scholar 

  223. Sambasivan SK, Shashkov M-J, Burton DE (2013) A finite volume cell-centered lagrangian hydrodynamics approach for solids in general unstructured grids. Int J Numer Method Fluids 72:770–810

    Article  MathSciNet  MATH  Google Scholar 

  224. Sijoy CD, Chaturvedi S (2015) An Eulerian multi-material scheme for elastic–plastic impact and penetration problems involving large material deformations. Eur J Mech B/Fluids 53:85–100. https://doi.org/10.1016/j.euromechflu.2015.04.004

    Article  MathSciNet  MATH  Google Scholar 

  225. Després B, Labourasse E (2015) Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids. J Comput Phys 290:28–54. https://doi.org/10.1016/j.jcp.2015.02.032

    Article  MathSciNet  MATH  Google Scholar 

  226. Ndanou S, Favrie N, Gavrilyuk S (2015) Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation. J Comput Phys 295:523–555. https://doi.org/10.1016/j.jcp.2015.04.024

    Article  MathSciNet  MATH  Google Scholar 

  227. Cheng J-B, Toro EF, Jiang S, Yu M, Tang W (2015) A high-order cell-centered Lagrangian scheme for one-dimensional elastic–plastic problems. Comput Fluids 122:136–152. https://doi.org/10.1016/j.compfluid.2015.08.029

    Article  MathSciNet  MATH  Google Scholar 

  228. Loubere R, Maire P-H, Rebourcet B (2016) Staggered and colocated finite volume schemes for Lagrangian hydrodynamics. In: Abgrall R, Shu C-W (eds) Handbook of numerical methods for hyperbolic problems, vol 17, pp 319 – 352. https://doi.org/10.1016/bs.hna.2016.07.003

  229. Boscheri W, Dumbser M, Loubére R (2016) Cell centered direct arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput Fluids 134–135:111–129. https://doi.org/10.1016/j.compfluid.2016.05.004

  230. Vilar F, Shu C-W, Maire P-H (2016) Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: from first-order to high-orders. Part I: the one-dimensional case. J Comput Phys 312:385–415. https://doi.org/10.1016/j.jcp.2016.02.027

  231. Georges G, Breil J, Maire P-H (2017) A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity. Int J Numer Methods Fluids 84(1):41–54. https://doi.org/10.1002/fld.4336

    Article  MathSciNet  Google Scholar 

  232. Heuzé T (2017) Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids. J Comput Phys 346:369–388. https://doi.org/10.1016/j.jcp.2017.06.027

    Article  MathSciNet  MATH  Google Scholar 

  233. Cheng J-B, Jia Y, Jiang S, Toro EF, Ming Yu (2017) A second-order cell-centered Lagrangian method for two-dimensional elastic–plastic flows. Commun Comput Phys 22(5):1224–1257. https://doi.org/10.4208/cicp.OA-2016-0173

    Article  MathSciNet  Google Scholar 

  234. Cheng J-B, Huang W, Jiang S, Tian B (2017) A third-order moving mesh cell-centered scheme for one-dimensional elastic–plastic flows. J Comput Phys 349:137–153. https://doi.org/10.1016/j.jcp.2017.08.018

  235. Fridrich D, Liska R, Wendroff B (2017) Cell-centered Lagrangian Lax–Wendroff HLL hybrid method for elasto-plastic flows. Comput Fluids 157:164–174. https://doi.org/10.1016/j.compfluid.2017.08.030

  236. Heuzé T (2018) Simulation of impacts on elastic–viscoplastic solids with the flux-difference splitting finite volume method applied to non-uniform quadrilateral meshes. Adv Model Simul Eng Sci 5(1):9, 2018 https://doi.org/10.1186/s40323-018-0101-z

  237. Aguirre M, Gil AJ, Bonet J, Lee CH (2015) An upwind vertex centred finite volume solver for Lagrangian solid dynamics. J Comput Phys 300:387–422

    Article  MathSciNet  MATH  Google Scholar 

  238. Selim MM, Koomullil RP, Mcdaniel DR (2016) Linear elasticity finite volume based structural dynamics solver. In: AIAA modeling and simulation technologies conference, Washington, DC, USA. https://doi.org/10.2514/6.2016-4418

  239. Selim MM, Koomullil R, McDaniel DR (2017) Finite volume based fluid–structure interaction solver. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Grapevine, TX

  240. Baliga BR, Patankar SV (1980) A new finite-element formulation for convection–diffusion problems. Numer Heat Trans Part B Fundam 3(4):393–409. https://doi.org/10.1080/01495728008961767

    Article  Google Scholar 

  241. Taylor GA, Bailey C, Cross M (2003) A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics. Int J Numer Methods Eng 56:507–529

    Article  MATH  Google Scholar 

  242. Wheel MA (1996) A geometrically versatile finite volume formulation for plane elastostatic stress analysis. J Strain Anal Eng Des 31:111–116

    Article  Google Scholar 

  243. Wheel MA (1996) A finite-volume approach to the stress analysis of pressurised axisymmetric structures. Int J Press Vessels Pip 68:311–317

    Article  Google Scholar 

  244. Wheel MA (1998) Applying the finite volume approach to structural analysis. In: O’Donoghue PE, Atluri SN (ed) Modelling and simulation in engineering, pp 229–234

  245. Wheel MA (1999) A mixed finite volume formulation for determining the small strain deformation of incompressible materials. Int J Numer Methods Eng 44:1843–1861

    Article  MATH  Google Scholar 

  246. Costa VAF, Sousa ACM (2000) A control volume-based fem for the solution of the three-dimensional, elastic stress–strain equations. In: WSEAS Proceedings 2nd World MCME (Mathematics and Computers in Mechanical Engineering, MCME 2000), Vouliagmeni, Greece

  247. Fallah N (2005) Using shape function in cell centred finite volume formulation for two dimensional stress analysis. Lecture series on computer and computational sciences (ICCMSE 2005), vol 4. Brill Academic Publishers, The Netherlands

  248. Xia GH, Zhao Y, Yeo JH, Lv X (2007) A 3D implicit unstructured-grid finite volume method for structural dynamics. Comput Mech 40:299–312

    Article  MATH  Google Scholar 

  249. Tsui Y-Y, Huang Y-C, Huang C-L, Lin S-W (2013) A finite-volume-based approach for dynamic fluid–structure interaction. Numer Heat Transf Part B Fundam 64(4):326–349. https://doi.org/10.1080/10407790.2013.806691

    Article  Google Scholar 

  250. Wu Y, Xie X, Chen L (2013) Hybrid stress finite volume method for linear elasticity problems. Int J Numer Anal Model 10:634–656

    MathSciNet  MATH  Google Scholar 

  251. Taylor GA, Bailey C, Cross M (1995) Solution of the elastic/visco-plastic constitutive equations: a finite volume approach. Appl Math Model 19:746–760

    Article  MATH  Google Scholar 

  252. Ferguson WJ (1998) The control volume finite element numerical solution technique applied to creep in softwoods. Int J Solids Struct 35:1325–1338

    Article  MATH  Google Scholar 

  253. Hambleton JP, Sloan SW, Pyatigorets AV, Voller VR (2011) Lower bound limit analysis using the control volume finite element method. In: 13th international conference of the IACMAG, Melbourne, Australia, pp 88–93

  254. Fallah N, Bailey C, Cross M (1999) Finite volume method for stress analysis. In: Proceedings ASME The 7th annual conference of the association for computational mechanics in engineering, vol 99, Durham, UK, pp 135–138

  255. Fallah N, Bailey C, Cross M, Taylor GA (2000) Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis. Appl Math Model 24:439–455

    Article  MATH  Google Scholar 

  256. Fallah N, Bailey C, Cross M (2000) CFD approach for solid mechanics analysis. In: European congress on computational methods in applied sciences and engineering, ECCOMAS 2000, Barcelona, Spain, 11–14 September 2000

  257. Fallah N (2000) Computational stress analysis using finite volume methods. PhD thesis, University of Greenwich

  258. Slone AK, Fallah N, Bailey C, Cross M (2002) A finite volume approach to geometrically nonlinear stress analysis. In: Third international symposium on finite volumes for complex applications—problems and perspectives, pp 663–670

  259. Teran J, Blemker S, Hing VNT, Fedkiw R (2003) Finite volume methods for the simulation of skeletal muscle. In: Eurographics/SIGGRAPH symposium on computer animation

  260. Limache AC, Idelsohn SR (2007) On the development of finite volume methods for computational solid mechanics. Mec Comput 26:827–843

    Google Scholar 

  261. Wheel MA (1997) A finite volume method for analyzing the bending deformation of thick and thin plates. Comput Methods Appl Mech Eng 147:199–208

    Article  MATH  Google Scholar 

  262. Beveridge AJ, Wheel M (2009) A control volume based formulation of the discrete Kirchoff triangular thin plate bending element. In: The 17th UK national conference on computational mechanics in engineering, Nottingham, UK, pp 287–290

  263. Taylor GA (1996) A vertex based discretisation scheme applied to material non-linearity within a multi-physics framework. PhD thesis, University of Greenwich

  264. Bailey C, Chow P, Cross M, Fryer Y, Pericleous K (1996) Multiphysics modelling of metals casting process. Proc R Soc Lond Math Phys Eng Sci, pp 459–486

  265. Bailey C, Taylor GA, Bounds SM, Moran G, Cross M (1997) PHYSICA: a multiphysics computational framework and its application to casting. Miner Metal Process Power Gener, pp 419–425

  266. Bailey C, Bounds S, Cross M, Moran G, Pericleous K, Taylor GA (1999) Multiphysics modeling and its application to the casting process. Comput Model Simul Eng 4:206–212

    Google Scholar 

  267. Bailey C, Taylor GA, Cross M, Chow P (1999) Discretisation procedures for for multi-physics phenomena. J Comput Appl Math 103:3–17

    Article  MathSciNet  MATH  Google Scholar 

  268. Oldroyd AB, Wheel MA, Scanlon TJ (1999) An integrated volume based approach for analysing flow induced vibrations. In: Proceedings European conference on computational mechanics (ECCM), Munich, Germany, September 1999

  269. Wheel MA, Oldroyd A, Scanlon TJ, Wenke P (1999) Integrating finite volume based structural analysis procedures with CFD software to analyse fluid–structure interaction. In: Proceedings of 2nd international confernce on finite volumes for complex applications, Duisburg, Germany

  270. Slone AK (2000) A finite volume unstructured mesh approach to dynamic fluid–structure interactions between fluids and linear elastic solids. PhD thesis, University of Greenwich

  271. Slone AK, Pericleous K, Bailey C, Cross M (2001) Details of an integrated approach to three- dimensional dynamic fluid–structure interaction. Fluid–structure interaction. WIT Press, London, pp 57–66

    Google Scholar 

  272. Slone AK, Pericleous K, Bailey C, Cross M (2002) Dynamic fluid–structure interaction using finite volume unstructured mesh procedures. Comput Struct 80:371–390

    Article  Google Scholar 

  273. Slone AK, Bailey C, Cross M (2003) Dynamic solid mechanics using finite volume methods. Appl Math Model 27:69–87

    Article  MATH  Google Scholar 

  274. Slone AK, Pericleous K, Bailey C, Cross M, Bennett C (2004) A finite volume unstructured mesh approach to dynamic fluid–structure interaction: an assessment of the challenge of predicting the onset of flutter. Appl Math Model 28:211–239

    Article  MATH  Google Scholar 

  275. Slone AK, Croft TN, Williams AJ, Cross M (2007) An alternative mixed Eulerian–Lagrangian approach to high speed collision between solid structures on parallel clusters. Adv Eng Softw 38(4): 244–255. https://doi.org/10.1016/j.advengsoft.2006.09.015

  276. Cross M, Croft TN, Slone AK, Williams AJ, Christakis N, Patel MK, Bailey C, Pericleous K (2007) Computational modelling of multi-physics and multi-scale processes in parallel. Int J Comput Methods Eng Sci Mech 8(2):63–74. https://doi.org/10.1080/15502280601149510

    Article  MATH  Google Scholar 

  277. Lv X, Zhao Y, Huang XY, Xia GH, Su XH (2007) A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid–structure interaction. J Comput Phys 225:120–144

    Article  MATH  Google Scholar 

  278. Croft TN, Williams AJ, Slone AK, Cross M (2008) A two-dimensional prototype multi-physics model of the right ventricle of the heart. Int J Numer Methods Fluids 57(5):583–600. https://doi.org/10.1002/fld.1764

    Article  MathSciNet  MATH  Google Scholar 

  279. Xia GH, Lin Cl (2008) An unstructured finite volume approach for structural dynamics in response to fluid motions. Comput Struct 86:684–701

  280. Hejranfar K, Azampour MH (2016) Simulation of 2D fluid–structure interaction in inviscid compressible flows using a cell-vertex central difference finite volume method. J Fluids Struct 67:190–218

    Article  Google Scholar 

  281. Taylor GA (1995) Material non-linearity within a finite volume framework for the simulation of a metal casting process. Comput Plast Fundam Appl II:1459–1470

    Google Scholar 

  282. Taylor GA, Bailey C, Cross M (1998) A three dimensional finite volume approach to the thermomechanical modelling of the shape casting of metals. In: Proceedings of 8th international conference on modelling of casting, welding and advanced solidification processes

  283. Cross M (1996) Computational issues in the modelling of materials-based manufacturing processes. J Comput Aided Mater Des 3:100–116

    Article  Google Scholar 

  284. Bounds S, Moran G, Pericleous K, Cross M, Croft TN (2000) A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and solidification phenomena. Metall Mater Trans B 31:515–527

    Article  Google Scholar 

  285. Williams AJ, Croft TN, Cross M. (2001) Computational modelling of metals extrusion and forging processes. In: Cross M, Ewans JW, Bailey C (eds) Computational modelling of materials, minerals and metals processing, TMS, pp 481–490 (2001)

  286. Williams AJ, Croft TN, Cross M (2002) Computational modelling of metal extrusion and forging processes. J Mater Process Technol 125:573–582. https://doi.org/10.1016/S0924-0136(02)00401-6

    Article  Google Scholar 

  287. Williams AJ, Slone AK, Croft TN, Cross M (2010) A mixed Eulerian–Lagrangian method for modelling metal extrusion processes. Comput Methods Appl Mech Eng 199:2123–2134

    Article  MathSciNet  MATH  Google Scholar 

  288. Taylor GA, Hughes M, Pericleous K (2000) The application of three dimensional finite volume methods to the modelling of welding phenomena. In: Sahm PR, Hansen PN, Conley JG (eds) Welding and advanced solidification processes IX, modeling of casting

  289. Taylor GA, Hughes M, Strusevich N, Pericleous K (2002) Finite volume methods applied to the computational modelling of welding phenomena. Appl Math Model 26:309–320

    Article  MATH  Google Scholar 

  290. Taylor GA, Breiguine V, Bailey C, Cross M (2000) An augmented Lagrangian contact algorithm employing a vertex-based finite volume method. In: ACME, 2000. http://www.brunel.ac.uk/ eesrgat/research/ps_pubs

  291. Gong J-F, Xuan L-K, Ming P-J, Zhang W-P (2013) Thermoelastic analysis of functionally graded solids using a staggered finite volume method. Compos Struct 104:134–143

    Article  Google Scholar 

  292. Gong J-F, Ming P-J, Xuan L-K, Zhang W-P (2014) Thermoelastic analysis of three-dimensional functionally graded rotating disks based on finite volume method. J Mech Eng Sci. https://doi.org/10.1177/0954406213489933

    Article  Google Scholar 

  293. Perré P, Passard J (1995) A control-volume procedure compared with the finite-element method for calculating stress and strain during wood drying. Drying Technol 13:635–660

    Article  Google Scholar 

  294. Salinas C, Chávez C, Gatica Y, Ananias R (2011) Two-dimensional wood drying stress simulation using control control-volume mixed finite element methods (CVFEM). Ingenere Investig 31:171–183

    MATH  Google Scholar 

  295. Wheel MA (2008) A control volume-based finite element method for plane micropolar elasticity. Int J Numer Methods Eng 75:992–1006

    Article  MATH  Google Scholar 

  296. Beveridge AJ, Wheel M, Nash D (2013) A higher order control volume based finite element method to predict the deformation of heterogeneous materials. Comput Struct 129:56–62

    Article  Google Scholar 

  297. Zhu M, Ming P-J, Xuan L, Zhang W-P (2012) An unstructured finite volume time domain method for structural dynamics. Appl Math Model 36:183–192

    Article  MATH  Google Scholar 

  298. Xuan L, Ming P-J, Gong J, Zheng D, Zhang W-P (2014) A finite volume time domain method for in-plane vibration on mixed grids. J Vib Acoust. https://doi.org/10.1177/1687814017690068

    Article  Google Scholar 

  299. Xuan L, Ming P-J, Zhang W-P, Jin G, Gong J (2014) Time domain finite volume method for the transient response and natural characteristics of structural–acoustic coupling in an enclosed cavity. Shengxue Xuebao/Acta Acoust 39:215–225

    Google Scholar 

  300. Wenke P, Wheel MA (2003) A finite volume method for solid mechanics incorporating rotational degrees of freedom. Comput Struct 81:321–329

    Article  Google Scholar 

  301. Pan W, Wheel M, Qin Y (2010) Six-node triangle finite volume method for solids with a rotational degree of freedom for incompressible material. Comput Struct 88:1506–1511

    Article  Google Scholar 

  302. Pan W, Wheel M (2011) A finite-volume method for solids with a rotational degrees of freedom based on the 6-node triangle. Int J Numer Methods Biomed Eng 27:1411–1426

    MathSciNet  MATH  Google Scholar 

  303. McManus K, Cross M, Walshaw C, Johnson S, Leggett P, Scalable A (2000) Strategy for the parallelization of multiphysics unstructured mesh-iterative codes on distributed-memory systems. Int J High Perform Comput Appl 14:137–174

    Article  Google Scholar 

  304. McManus K, Cross M, Walshaw C, Croft TN, Williams AJ (2002) Parallel performance in multi-physics simulation. In: ICCS ’02 Proceedings of the international conference on computational science—part II. Springer, London, pp 806–815

  305. Maitre JF, Rezgui A, Souhail H, Zine AM (2002) High order finite volume schemes: application to non-linear elasticity problems. In: Finite volumes for complex applications, III (Porquerolles), Hermes Science Publishers, Paris, pp 391–398

  306. Souhail H (2004) Schéma volumes finis: estimation d'erreur a posteriori hiérarchique par éléments finis mixtes. Résolution de problémes d’élasticité non-linéaire. PhD thesis, Ecole Centrale de Lyon

  307. Zhang J, Liu T (1999) P-SV wave propagation in heterogeneous media: grid method. Geophys J Int 136:431–438

    Article  Google Scholar 

  308. Zhang J, Liu T (2002) Elastic wave modelling in 3-D heterogeneous media: 3-D grid method. Geophys J Int 150:780–799

    Article  Google Scholar 

  309. Zhang J (2004) Wave propagation across fluid–solid interfaces: a grid method approach. Geophys J Int 159:240–252

    Article  Google Scholar 

  310. Liu T, Liu K, Zhang J (2004) Unstructured grid method for stress wave propagation in elastic media. Comput Methods Appl Mech Eng 193:2427–2452

    Article  MATH  Google Scholar 

  311. Liu T, Liu K, Zhang J (2005) Triangular grid method for stress-wave propagation in 2-D orthotropic materials. Arch Appl Mech 74:477–488

    Article  MATH  Google Scholar 

  312. Gao H, Zhang J (2006) Parallel 3-D simulation of seismic wave propagation in heterogeneous anisotropic media: a grid method approach. Geophys J Int 165:875–888

    Article  Google Scholar 

  313. Dormy E, Tarantola A (1995) Numerical simulation of elastic wave propagation using a finite volume method. J Geophys Res 100:2123–2133. https://doi.org/10.1029/94JB02648

    Article  Google Scholar 

  314. Harlow FH, Welch JE (1965) Numerical calculation of the time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182

    Article  MathSciNet  MATH  Google Scholar 

  315. Spalding DB (1993) Simulation of fluid flow, heat transfer and solid deformation simultaneously. In: NAFEMS Conference No 4, Brighton, UK

  316. Spalding DB (1997) Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code. In: Keynote lecture 4th international colloquium on process simulation. Helsinki University of Technology, Espoo, Finland

  317. Spalding DB (1998) Fluid–structure interaction in the presence of heat transfer and chemical reaction. In: ASME/JSME point pressure vessels and piping conference, San Diego, CA, USA

  318. Spalding DB (1998) Fluid–structure interaction in the presence of heat transfer and chemical reaction. In: Kudriavtsev V, Cheng W (eds) Computational technologies for fluid/thermal/structural/chemical systems with industrial applications

  319. Spalding DB (2002) Simultaneous prediction of solid stress, heat transfer and fluid flow by a single algorithm. In: ASME pressure vessels and piping conference, Vancouver, British Columbia, Canada

  320. Spalding DB (2006) Extending the boundaries of heat transfer. In: The 13th international heat transfer conference, Sydney, Australia

  321. Spalding DB (2008) Enlarging the frontiers of computational fluid dynamics. In: International symposium heat and mass transfer and hydrodynamics in swirling flow, Moscow, Russia

  322. Patanker SV, Spalding DB (1972) A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787

    Article  MATH  Google Scholar 

  323. Patankar SV (1980) Numerical hear transfer and fluid flow. Hemisphere Publishing Corporation, McGraw-Hill Book Company, Washington

    MATH  Google Scholar 

  324. Hattel JH, Hansen P, Hansen LF (1993) Analysis of thermally induced stresses in die casting using a novel control volume technique. In: Piwonka T (ed) Modelling of casting and welding and advanced solidification processes advanced solidification processes minerals advanced solidification processes minerals metals and materials society. TMS

  325. Hattel JH, Hansen PN, Andersen S (1993) Modeling of thermal induced stresses in high pressure die casting dies. In: NADCA 19th international die casting congress, NADC, Transactions, Rosemant, IL, USA

  326. Hattel JH (1993) Stress calculations using a control volume based finite difference method. Revnedannelse og Brudmekanik, DMS Vintermderbog

  327. Hattel JH (1993) Control volume based finite difference method—numerical modeling of thermal and mechanical conditions in casting and heat treatment processes. PhD thesis, Institute of Manufacturing Engineering, Technical University of Denmark

  328. Hattel JH, Hansen PN (1994) 1-D analytical model for the thermally induced stresses in the mold surface during die casting. Appl Math Model 18:550–559

    Article  MATH  Google Scholar 

  329. Hattel JH, Hansen PN (1995) A control volume-based finite difference method for solving the equilibrium equations in terms of displacements. Appl Math Model 19:210–243

    Article  MATH  Google Scholar 

  330. Hattel JH (1997) Numerical modelling of stresses and deformations in casting processes. In: Proceedings of CASTING international ADI and simulation conference. Helsinki University of Technology, Helsinki

  331. Pryds N, Hattel JH (1997) Numerical modelling of rapid solidification. Model Simul Mater Sci Eng 5(5):451–472

    Article  Google Scholar 

  332. Hattel JH, Thorborg J, Andersen S (1998) Stress/strain modelling of casting processes in the framework of the control-volume method. In: Modeling of casting and advanced solidification processes VIII, Warrendale, USA: TMS, The Minerals, Metals and Materials Society, pp 763–770

  333. Hattel JH, Pryds N (2001) Modelling rapid solidification with the control volume method. In: Dinesen AR, Eldrup M, Juul Jensen D, Linderoth S, Pedersen TB, Pryds NH, Schrder Pedersen A, Wert JA (eds) Proceedings of science of metastable and nanocrystalline alloys—structure, properties and modelling, Roskilde, Ris National Laboratory, pp 241–247

  334. Thorborg J (2001) Nonlinear constitutive modelling in thermomechanical processes with the control volume method. PhD thesis, Department of Manufacturing Engineering, Technical University of Denmark

  335. Hattel JH, Thorborg J (2003) A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete. Appl Math Model 27:1–26

    Article  MATH  Google Scholar 

  336. Thorborg J, Hattel JH (2003) Thermo-elasto-plasticity in solidification processes using the control volume method on staggered grid. In: Stefanescu et al (ed) Modelling of casting, welding and advanced solidification processes. Warrendale: TMS—The Minerals, Metals and Materials Society

  337. Wang L, Melnik R (2007) Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf 43:535

    Article  Google Scholar 

  338. Rajagopal KR, Srinivasa AR, Ponnalagu A (2014) Thermo-inelastic response of polymeric solids. Technical report, Final Report, Texas Engineering Experiment Station, Harvey Mitchell Parkway South, Suite 300, College Station, TX

  339. Aboudi J, Pindera M-J, Arnold SM (1999) Higher-order theory for functionally graded materials. Compos B Eng 30:777–832

    Article  Google Scholar 

  340. Aboudi J (2001) Micromechanical analysis of fully coupled electro–magneto–thermo–elastic multiphase composites. Smart Mater Struct 10:867–877

    Article  Google Scholar 

  341. Aboudi J, Pindera M-J, Arnold SM (2001) Linear thermoelastic higher-order theory for periodic multiphase materials. ASME J Appl Mech 68:697–707

    Article  MATH  Google Scholar 

  342. Haj-Ali R, Aboudi J (2009) Nonlinear micromechanical formulation of the high fidelity generalized method of cells. Int J Solids Struct 46:2577–2592

    Article  MATH  Google Scholar 

  343. Haj-Ali R, Aboudi J (2012) Discussion paper: has renaming the high fidelity generalized method of cells been justified? Int J Solids Struct 49:2051–2058

    Article  Google Scholar 

  344. Bansal Y, Pindera M-J (2005) A second look at the higher-order theory for periodic multiphase materials. ASME J Appl Mech 72:177–195

    Article  MATH  Google Scholar 

  345. Bansal Y, Pindera M-J (2006) Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int J Plast 22:775–825

    Article  MATH  Google Scholar 

  346. Aboudi J (1982) A continuum theory for fiber-reinforced elastic–viscoplastic composites. Int J Eng Sci 20:605–621

    Article  MATH  Google Scholar 

  347. Aboudi J (1991) Mechanics of composite materials: a unified micromechanical approach. Elsevier, Amsterdam

    MATH  Google Scholar 

  348. Paley M, Aboudi J (1992) Micromechanical analysis of composites by the generalized cells model. Mech Mater 14:127–139

    Article  Google Scholar 

  349. Cavalcante MAA, Pindera M-J (2016) Generalized FVDAM theory for elastic–plastic periodic materials. Int J Plast 77:90–117

    Article  Google Scholar 

  350. Aboudi J (2004) The generalized method of cells and high-fidelity generalized method of cells micromechanical models: a review. Mech Adv Mater Struct 11:329–366

    Article  Google Scholar 

  351. Pindera M-J, Khatam H, Drago AS, Bansal Y (2009) Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos B Eng 40:349–378

    Article  Google Scholar 

  352. Charalambakis N, Murat F (2006) Homogenization of stratified thermoviscoplastic materials. Q Appl Math 64(2):359–99

    Article  MathSciNet  MATH  Google Scholar 

  353. Aboudi J, Arnold SM, Bednarcyk BA (2007) Micromechanical analyses of smart composite materials. Nova Science Publishers, New York

    Google Scholar 

  354. Aboudi J (2008) Finite strain micromechanical modeling of multiphase composites. Int J Multiscale Comput Eng 6:411–434

    Article  Google Scholar 

  355. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3:11–51

    MathSciNet  MATH  Google Scholar 

  356. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127. https://doi.org/10.1007/s004660050346

    Article  MathSciNet  MATH  Google Scholar 

  357. Ching H-K, Batra RC (2001) Determination of crack tip fields in linear elastostatics by the meshless local Petrov–Galerkin (MLPG) Method. Comput Model Eng Sci 2:273–289

    Google Scholar 

  358. Warlock A, Ching H-K, Kapila AK, Batra RC (2002) Plane strain deformations of an elastic material compressed in a rough rectangular cavity. Int J Eng Sci 40:991–1010

    Article  Google Scholar 

  359. Qian L, Batra R, Chen L (2003) Elastostatic deformations of a thick plate by using a higher-order shear and normal deformable plate theory and two meshless local Petrov–Galerkin (MLPG) methods. Comput Model Eng Sci 4(1):161–76

    MATH  Google Scholar 

  360. Raju I, Phillips D (2003) Further developments in the MLPG method for beam problems. Comput Model Eng Sci 4(1):141–60

    MathSciNet  MATH  Google Scholar 

  361. Atluri SN, Han Z, Rajendran A (2004) A new implementation of the meshless finite volume method, through the MLPG “mixed” approach. Comput Model Eng Sci 6(6):491–514

    MathSciNet  MATH  Google Scholar 

  362. Han Z, Atluri SN (2004) Meshless local Petrov–Galerkin (MLPG) approaches for solving 3D problems in elasto-statics. Comput Model Eng Sci 6:169–88

    MathSciNet  MATH  Google Scholar 

  363. Batra RC, Porfiri M, Spinello D (2004) Treatment of material discontinuity in two meshless local Petrov–Galerkin (MLPG) formulations of axisymmetric transient heat conduction. Int J Numer Methods Eng 61:2461–2479

    Article  MATH  Google Scholar 

  364. Han Z, Rajendran A, Atluri SN (2005) Meshless local Petrov–Galerkin (MLPG) approaches for solving nonlinear problems with large deformations and rotations. Comput Model Eng Sci 10(1):1

    MathSciNet  MATH  Google Scholar 

  365. Sladek J, Sladek V, Solek P, Saez A (2008) Dynamic 3D axisymmetric problems in continuously non-homogeneous piezoelectric solids. Int J Solids Struct 45(16):4523–4542. https://doi.org/10.1016/j.ijsolstr.2008.03.027

    Article  MATH  Google Scholar 

  366. Moosavi MR, Khelil A (2008) Accuracy and computational efficiency of the finite volume method combined with the meshless local Petrov-Galerkin in comparison with the finite element method in elasto-static problem. ICCES 5:211–38

    Google Scholar 

  367. Moosavi MR, Khelil A (2009) Finite volume meshless local Petrov–Galerkin method in elastodynamic problems. Eng Anal Bound Elem 33:1016–1021

    Article  MATH  Google Scholar 

  368. Moosavi MR, Delfanian F, Khelil A (2011) Orthogonal meshless finite volume method in elasticity. Thin-Walled Struct 49:708–712

    Article  Google Scholar 

  369. Moosavi MR, Delfanian F, Khelil A (2011) The orthogonal meshless finite volume method for solving Euler–Bernoulli beam and thin plate problems. Thin-Walled Struct 49:923–932

    Article  Google Scholar 

  370. Hosseini SM, Sladek J, Sladek V (2011) Meshless local Petrov–Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng Anal Bound Elem 35(6):827–835. https://doi.org/10.1016/j.enganabound.2011.02.001

    Article  MathSciNet  MATH  Google Scholar 

  371. Soares D, Sladek V, Sladek J (2012) Modified meshless local Petrov–Galerkin formulations for elastodynamics. Int J Numer Methods Eng 90(12):1508–1828. https://doi.org/10.1002/nme.3373

    Article  MathSciNet  MATH  Google Scholar 

  372. Moosavi MR, Delfanian F, Khelil A (2012) Orthogonal meshless finite volume method applied to crack problems. Thin-Walled Struct 52:61–65

    Article  Google Scholar 

  373. Moosavi M, Delfanian F, Khelil A (2012) Orthogonal meshless finite volume method in shell analysis. Finite Elem Anal Des 62:1–7

    Article  MathSciNet  Google Scholar 

  374. Moosavi MR (2013) Orthogonal meshless finite volume method applied to elastodynamic crack problems. Int J Fract 179:1–7. https://doi.org/10.1007/s10704-012-9752-9

    Article  Google Scholar 

  375. Ebrahimnejad M, Fallah N, Khoei AR (2015) Adaptive refinement in the meshless finite volume method for elasticity problems. Comput Math Appl 69:1420–1443

    Article  MathSciNet  MATH  Google Scholar 

  376. Ebrahimnejad M, Fallah N, Khoei AR (2017) Three types of meshless finite volume method for the analysis of two-dimensional elasticity problems. Comput Appl Math 36(2):971–990

    Article  MathSciNet  MATH  Google Scholar 

  377. Fallah N (2018) Mesh-free and mesh based finite volume methods for solid mechanics analysis. In: 41st solid mechanics conference (SOLMECH 2018), Warsaw, Poland

  378. Davoudi-Kia A, Fallah N (2017) Comparison of enriched meshless finite-volume and element-free Galerkin methods for the analysis of heterogeneous media. Eng Comput. https://doi.org/10.1007/s00366-017-0573-3

    Article  Google Scholar 

  379. Davoudi-Kia A, Fallah N (2018) An enriched meshless finite volume method for the modeling of material discontinuity problems in 2D elasticity. Latin Am J Solids Struct 15(2):209–219. https://doi.org/10.1590/1679-78254121

    Article  Google Scholar 

  380. Fallah N, Nikraftar N (2018) Meshless finite volume method for the analysis of fracture problems in orthotropic media. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2018.09.029

    Article  Google Scholar 

  381. Bašić H, Demirdžić I, Muzaferija S (2001) Analysis of plastic flow of metals during extrusion processes using finite volume method. In: Proceedings of 3rd international conference on industrial tools, Slovenia, pp 22–26

  382. Bašić H (2008) Friction models comparison in finite volume method simulation of bulk metal forming technologies. J Technol Plast 33:113–122

    Google Scholar 

  383. Bašić H (2009) The constitutive models in numerical simulation of steady-state metal forming processes. J Technol Plast 34:27–36

    Google Scholar 

  384. Chen ZZ, Lou ZL, Ruan XY (2007) Finite volume simulation and mould optimization of aluminum profile extrusion. J Mater Process Technol 190(1–3):382–386. https://doi.org/10.1016/j.jmatprotec.2007.01.032

    Article  Google Scholar 

  385. Jafari MR, Zebarjad SM, Kolahan F (2007) Simulation of thixoformability of A356 aluminum alloy using finite volume method. Mater Sci Eng A 454:558–563. https://doi.org/10.1016/j.msea.2006.11.124

    Article  Google Scholar 

  386. Lou S, Zhao G, Wang R, Wu X (2008) Modeling of aluminum alloy profile extrusion process using finite volume method. J Mater Process Technol 206:481–490

    Article  Google Scholar 

  387. Al-Athel KS, Gadala MS (2011) Eulerian volume of solid (VOS) approach in solid mechanics and metal forming. Comput Methods Appl Mech Eng 200:2145–2159

    Article  MathSciNet  MATH  Google Scholar 

  388. Wang R, Li HZ (2011) Modeling of aluminum extrusion process using non-orthogonal block structured grids based FVM. Adv Mater Res 189:1749–1752

    Google Scholar 

  389. Wang R (2012) Body fitted grids based FVM simulation of aluminum extrusion process. Adv Mater Res 418:2102–2105

    Google Scholar 

  390. Bressan JD, Martins MM, Button ST (2013) Aluminium extrusion analysis by the finite volume method. In: Nate O, Owen DRJ, Peric D, Suárez B (eds) XII international conference on computational plasticity. Fundamentals and applications COMPLAS XII

  391. Zhang C, Chen H, Zhao G, Zhang L, Lou S (2016) Optimization of porthole extrusion dies with the developed algorithm based on finite volume method. Int J Adv Manuf Technol 85:1–13

    Article  Google Scholar 

  392. de Brauer A, Iollo A, Milcent T (2016) A Cartesian scheme for compressible multimaterial models in 3D. J Comput Phys 313:121–143. https://doi.org/10.1016/j.jcp.2016.02.032

    Article  MathSciNet  MATH  Google Scholar 

  393. de Brauer A, Iollo A, Milcent T (2017) A Cartesian scheme for compressible multimaterial hyperelastic models with plasticity. Commun Comput Phys 22(5):1362–1384. https://doi.org/10.4208/cicp.OA-2017-0018

    Article  MathSciNet  Google Scholar 

  394. Teng JG, Chen SF, Hu JL (1999) A finite volume method for deformation analysis of woven fabrics. Int J Numer Methods Eng 46:2061–2098

    Article  MATH  Google Scholar 

  395. Chen SF, Hu JL, Teng JG (2001) A finite-volume method for contact drape simulation of woven fabrics and garments. Finite Elem Anal Des 37:513–531

    Article  MATH  Google Scholar 

  396. Martin B, Pascal F (2011) Discrete duality finite volume method applied to linear elasticity. Finite Vol Complex Appl VI Prob Perspect 4:663–671

    MathSciNet  MATH  Google Scholar 

  397. Martin B (2012) Elaboration de solveurs volumes finis 2D/3D pour résoudre le problème de l’elasticité linéaire. PhD thesis, Ecole normale supérieure de Cachan - ENS Cachan, Francais

  398. Di Pietro DA, Eymard R, Lemaire S, Masson R (2011) Hybrid finite volume discretization of linear elasticity models on general meshes. In: Fürst J, Halama J, Herbin R, Hubert F (eds) Finite Volumes for Complex Applications: VI Problems & Perspectives, volume 4 of Springer proceedings in mathematics. Springer, Berlin, pp 331–339

    Google Scholar 

  399. Wilkins ML (1963) Calculation of elastic–plastic flow, T3 - UCRL; 7322. Technical report, Lawrence Radiation Laboratory, Lawrence Livermore Laboratory, University of California, Berkeley. https://catalog.hathitrust.org/Record/007293160

  400. Wilkins ML (1964) Calculations of elastic–plastic flow. In: Adler B, Fernback S, Rotenberg M (eds) Methods of computational physics, vol 3. Lawrence Radiation Laboratory, Livermore

  401. Wilkins ML (1999) Computer simulation of dynamic phenomena. Springer, Berlin

    Book  MATH  Google Scholar 

  402. Bessonov NM, Golovashchenko SF, Volpert VA (2009) Numerical modelling of contact elastic-plastic flows. Math Model Nat Phenomena 4(1):44–87

    Article  MathSciNet  MATH  Google Scholar 

  403. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532. https://doi.org/10.2514/3.8284

    Article  MATH  Google Scholar 

  404. Jameson A, Schmidt W, Turkel E (1981) Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. In: AIAA 5th computational fluid dynamics conference, vol 81, p 1259

  405. Jacobs DAH (1980) Preconditioned conjugate gradient methods for solving systems of algebraic equations. Technical report, Central Electricity Research Laboratories Report (RD/L/N193/80)

  406. Hassan OII (2019) A vertex centred finite volume algorithm for fast solid dynamics: total and updated Lagrangian descriptions. PhD thesis, University of Swansea

  407. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  408. Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey

    MATH  Google Scholar 

  409. Schäfer M (2006) Computational engineering—introduction to numerical methods. Springer, Berlin

  410. Zienkiewicz OC, Taylor RL (2000) The finite element method, solid mechanics, vol 2, 5th edn. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  411. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  412. Dassault Systémes Simulia Corp. Abaqus 6.14 (2018) http://www.simulia.com/products/abaqus_fea.html

  413. Oñate E, Cervera M (1993) Derivation of thin plate bending elements with one degree of freedom per node. Eng Comput 10:543–561

    Article  Google Scholar 

  414. Oñate E (1998) Elementos finitos y volumenes finitos puntos de encuentro y posibilidad de nuevas aplicaciones. Technical report, CIMNE, Barcelona

  415. Oñate E, Zarate F (2000) Rotation-free triangular plate and shell elements. Int J Numer Methods Eng 47:557–603

    Article  MathSciNet  MATH  Google Scholar 

  416. Zienkiewicz OC (1995) Origins, milestones and directions of the finite element method: a personal view. Arch Comput Methods Eng State Art Rev 2(1):1–48

    Article  MathSciNet  MATH  Google Scholar 

  417. Lahrmann A (1992) An element formulation for the classical finite difference and finite volume method applied to arbitrarily shaped domains. Int J Numer Methods Eng 35:893–913

    Article  MATH  Google Scholar 

  418. Harrild DM, Henriquez CS (1997) A finite volume model of cardiac propagation. Ann Biomed Eng 25:315–334

    Article  Google Scholar 

  419. Fang Q, Tsuchiya T, Yamamoto T (2002) Finite difference, finite element and finite volume methods applied to two-point boundary value problems. J Comput Appl Math 139:9–19

    Article  MathSciNet  MATH  Google Scholar 

  420. Yamamoto T, Fang Q, Tsuchiya T (2002) Finite element and finite volume methods applied to two-point boundary value problems. J Comput Appl Math 139:9–19

    Article  MathSciNet  MATH  Google Scholar 

  421. Jacquemet V, Henriquez CS (2005) Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. IEEE Trans Biomed Eng 52:1490–1492

    Article  Google Scholar 

  422. Jacquemet V (2005) Link between the FEM and FVM formulations of anisotropic cardiac propagation in unstructured meshes. Technical report, ITS Technical Report, TR-ITS 021:2005

  423. Filippini G, Maliska CR, Vaz M Jr (2014) A physical perspective of the element-based finite volume method and FEM-Galerkin methods within the framework of the space of finite elements. Int J Numer Methods Eng 98:24–43

    Article  MathSciNet  MATH  Google Scholar 

  424. Demirdžić I (2020) Finite volumes vs finite elements. There is a choice. Coupled Syst Mech 9(1):5–28. https://doi.org/10.12989/csm.2020.9.1.005

  425. Hassan OI, Ghavamian A, Lee CH, Gil AJ, Bonet J, Auricchio F (2019) An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: total and updated lagrangian formulations. J Comput Phys 3:100025. https://doi.org/10.1016/j.jcpx.2019.100025

    Article  MathSciNet  Google Scholar 

  426. Smith IM, Griffiths DV, Margetts L (2013) Programming the finite element method, 5th edn. Wiley, London

    MATH  Google Scholar 

  427. Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., New Mexico (USA). Technical Report 836, LA-UR-73-479; CONF-730414-2

  428. Cockburn B (2003) Discontinuous Galerkin methods. Technical report, School of Mathematics, Univeristy of Minnesota

  429. Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47:1319–1365. https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  430. Fu G, Cockburn B, Stolarski H (2015) Analysis of an HDG method for linear elasticity. Int J Numer Methods Eng 102(3–4):551–575. https://doi.org/10.1002/nme.4781

    Article  MathSciNet  MATH  Google Scholar 

  431. Qiu W, Shen J, Shi K (2018) An hdg method for linear elasticity with strong symmetric stresses. Math Comput 87:69–93. https://doi.org/10.1090/mcom/3249

    Article  MathSciNet  MATH  Google Scholar 

  432. Sevilla R, Giacomini M, Karkoulias A, Huerta A (2018) A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. Int J Numer Methods Eng 116:91–116. https://doi.org/10.1002/nme.5916

    Article  MathSciNet  MATH  Google Scholar 

  433. Hesthaven JS, Warburton T (2007) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications (texts in applied mathematics). Springer, New York

    Google Scholar 

  434. Slone AK, Pericleous K, Bailey C, Cross M (1997) Dynamic fluid–structure interactions using finite volume unstructured mesh procedures. In: International forum on aero-elasticity and structural dynamics, pp 417–424

  435. Demirdžić I (1998) Finite volume approach to multi-physics problems. In: Alturi SN, O’Donoghue PE (eds) Modelling and simulation based engineering. Tech Science Press, Palmdale, pp 1757–1762

    Google Scholar 

  436. Schäfer M, Meynen S, Sieber R, Teschauer I (2000) Multigrid methods for coupled fluid–solid problems. In: European congress on computational methods in applied sciences and engineering, ECCOMAS 2000, Barcelona, Spain

  437. Slone AK, Cross M, Pericleous K, Bailey C (2000) A finite volume approach to dynamic fluid–structure interaction. In: 8th annual conference of the association for computational mechanics in engineering (ACME 2000). Greenwich University, London, UK, pp 218–221

  438. Slone AK, Pericleous K, Bailey C, Cross M (2000) Dynamic fluid–structure interactions using finite volume unstructured mesh procedures. In: 8th symposium on multidisciplinary analysis and optimization, multidisciplinary analysis optimization conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2000-4788

  439. Slone AK, Pericleous K, Bailey C, Cross M (2001) Dynamic fluid–structure interactions using finite volume unstructured mesh procedures. In: ECCOMAS computational fluid dynamics conference

  440. Slone AK, Cross M, Pericleous K, Bailey C, Cross M (2001) Using finite volume unstructured mesh approach to dynamic fluid–structure interaction: an assessment of the challenge of flutter analysis. In: Wall WA, Bletzinger KU, Schweizerhof K (eds) Trends in computational structural mechanics. CIMNE: International Centre for Numerical Methods in Engineering, 2001, pp 741–750

  441. Džaferović E (2002) Interaction of viscoplastic fluid and viscoelastic solid—numerical modelling. PhD thesis, University of Sarajevo (in Bosnian)

  442. Karač A, Ivanković A (2002) Drop impact of fluid-filled plastic containers: finite volume method for coupled fluid-structure-fracture problems. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) WCCM V. Fifth world congress on computational mechanics, Vienna, Austria

  443. Slone AK, Croft TCN, Williams AJ, Cross M (2002) A two fluid approach to high impact interaction amongst solid structures. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) Fifth world congress on computational mechanics Proceedings. Vienna University of Technology, Vienna, Austria

  444. Slone AK, Grossman D, Williams AJ, Pericleous K, Bailey C, Cross M (2002) A time and space accurate numerical approach to closely coupled fluid–structure interaction problems. In: 11th international colloquium on numerical analysis and computer science with applications, Plovdiv, Bulgaria

  445. Karač A, Ivanković A (2003) Fully predictive model of the drop impact and fracture of fluid-filled plastic containers. In: Proceedings of 11th ACME conference on computational mechanics in engineering, Glasgow. University of Strathclyde Publishing, pp 113–116

  446. Karač A, Ivanković A (2003) Modelling the drop impact behaviour of fluid-filled polyethylene containers. In: Blackman BRK, Pavan A, Williams JG (eds) Fracture of polymers. ESIS publication 32. Composites and adhesives, pp 253–264

  447. Karač A (2003) Drop impact of fluid-filled polyethylene containers. PhD thesis, Imperial College London

  448. Cross M, Slone AK, Croft TN, Williams AJ (2004) Computational modelling of thermal fluid–structure interaction processes. In: Topping BHV (ed) Progress in engineering computational technology, pp 111–126. Saxe-Coberg Publications

  449. Karač A, Ivanković A (2004) Modelling drop impact and fracture of fluid-filled plastic containers. In: Proceedings of The 15th European conference on fracture—advanced fracture mechanics for life and safety assessments, Stockholm, Sweden

  450. Giannopapa CG (2004) Fluid–structure interaction in flexible vessels. PhD thesis, University of London

  451. Giannopapa CG, Papadakis G (2004) A new formulation for solids suitable for a unified solution method for fluid–structure interaction problems. In: ASME PVP, San Diego, CA, vol 491-1, pp 111–117

  452. Slone AK, Cross M (2006) A comparison of finite element and finite volume methods for computational structural mechanics and their application in multi-physics problems. In: 5th international conference on engineering computational technology. Civil-Comp Press

  453. Slone AK, Croft TN, Williams AJ, Cross M (2006) A mixed Eulerian–Lagrangian approach to high speed collision between solid structures on parallel clusters. In: 5th international conference on engineering computational technology. Civil-Comp Press

  454. Cross M, Croft TN, McBride D, Slone AK, Williams AJ (2006) Using mixed discretisation schemes in multi-physics simulation. In: Innovation in engineering computational technology, pp 309–324

  455. Papadakis G, Giannopapa CG (2006) Towards a unified solution method for fluid–structure interaction problems: progress and challenges. In: Proceedings of PVP 2006-ICPVT11 10th international symposium on emerging technology in fluids, Vancouver, Canada

  456. Giannopapa CG, Papadakis G (2007) Indicative results and progress on the development of the unified single solution method for fluid–structure interaction problems (CASA-report, No. 0711). Technical report, Technische Universiteit Eindhoven, Eindhoven

  457. Karač A, Ivanković A (2009) Investigating the behaviour of fluid-filled polyethylene containers under base drop impact: a combined experimental/numerical approach. Int J Impact Eng 36:621–631

    Article  Google Scholar 

  458. Safari A, Ivanković A, Tuković Ž, Casey E, Walter M (2009) A fluid–structure interaction study of biofilm detachment. In: 1st international conference on mathematical and computational biomedical engineering—CMBE2009, June 29–July 1, Swansea, UK

  459. Slone AK, Williams AJ, Croft TN, Cross M (2009) Dynamic fluid–structure interaction in parallel: a challenge for scalability. In: Topping BHV, Ivanyi P (eds) Parallel, distributed and grid computing for engineering. Saxe-Coburg Publications, pp 329–350

  460. Das S, Mathur SR, Murthy JY (2010) An unstructured finite-volume method for structure–electrostatic interactions in MEMS. In Proceedings of IMECE2010. ASME International mechanical engineering congress and exposition, Vancouver, Canada, p 2010

  461. Kelly A, O’Rourke M-J (2010) Two system, single analysis, fluid–structure interaction modelling of the abdominal aortic aneurysms. Proc Inst Mech Eng Part H J Eng Med 224(H8):955–970

    Article  Google Scholar 

  462. Kelly A, O’Rourke M-J (2012) Fluid, solid and fluid–structure interaction simulations on patient-based abdominal aortic aneurysm models. Proc Inst Mech Eng Part H J Eng Med 226(4):288–304

    Article  Google Scholar 

  463. Das S (2013) Fluid–structure interactions in microstructures. PhD thesis, University of Texas at Austin

  464. de Oliveira IL, Gasche JL, Militzer J, Baccin CE (2017) Using FOAM-extend to assess the influence of fluid–solid interaction on the flow in intracranial Aneurismus. In: COBEM-2017-0851, 24th ABCM international congress of mechanical engineering, Curitiba, PR, Brazil

  465. de Oliveira IL (2017) Using FOAM-extend to assess the influence of fluid–structure interaction on the rupture of intracranial aneurysms. PhD thesis, Sao Paulo State University, Júlio De Mesquita Filho

  466. Cardiff P, Karač A, De Jaeger P, Jasak H, Nagy J, Ivanković A, Tuković Ž (2018) Towards the development of an extendable solid mechanics and fluid–solid interactions toolbox for OpenFOAM. preprint. arXiv:1808.10736 [math.NA], available at https://arxiv.org/abs/1808.10736

  467. Tuković Ž, Bukač M, Cardiff P, Jasak H, Ivanković A (2018) Added mass partitioned fluid–structure interaction solver based on a robin boundary condition for pressure. In: OpenFOAM selected papers of the 11th workshop. Springer, Berlin, pp 1–23

  468. Leevers PS, Venizelos G, Ivanković A (1993) Rapid crack propagation along pressurized pipe: small-scale testing and numerical modelling. Constr Build Mater 7:179–184

    Article  Google Scholar 

  469. Demirdžić I, Ivanković A, MacGillivray HJ, Maneeratana K (1996) Numerical modelling of high-rate tensile tests using finite volume formulation. In: Proceedings of IUTAM symposium on innovative computational methods for fracture and damage, Dublin, Ireland

  470. Murphy N, Ivanković A (1999) Dynamic fracture simulation of brittle material characterised by microcrack-dominated failure mechanisms. In: Proceedings of 7th ACME conference computation mechanics in engineering, pp 99–102, Durham, UK

  471. Stylianou V (1999) Finite volume modelling of rapid crack propagation (RCP) in brittle polymers. PhD thesis, Imperial College, London

  472. Pandya KC, Ivanković A, Williams JG (2000) Cohesive zone modelling of crack growth in polymers—part 2—numerical simulation of crack growth. Plast Rubber Compos 29:447–452

    Article  Google Scholar 

  473. Pandya KC, Ivanković A, Williams JG (2000) Predicting crack growth in tough polyethylene from measured cohesive zone traction-separation curves. In: Proceedings of 11th international confernce on deformation, yield and fracture of polymers

  474. Pandya KC, Ivanković A, Williams JG (2000) Predictive fracture modelling in tough polyethylenes using experimentally measured cohesive zone traction curves. In: Proceedings of 13th European conference on fracture—ECF13, San Sebastian, Spain

  475. Ivanković A, Jasak H, Karač A, Tropša V, Leevers P (2002) Fully predictive model of RCP in plastic pipes. In: Proceedings of 14th European conference on fracture, Kracow, Poland

  476. Ivanković A, Jasak H, Karač A, Tropša V (2002) Prediction of dynamic fracture in pressurised plastic pipes. Annu Conf Assoc Comput Mech Eng 10:173–176

    Google Scholar 

  477. Ivanković A, Murphy N, Hillmansen S (2004) Evolution of dynamic fractures in PMMA: experimental and numerical investigations. In: Aliabadi MH, Ivanković A (eds) Advances in fracture mechanics, vol 9. WIT Press/Computational Mechanics Publications, Southampton

    MATH  Google Scholar 

  478. Murphy N (2007) Dynamic fracture of PMMA: a combined experimental and numerical investigation. PhD thesis, University College Dublin

  479. McAuliffe D, Karač A, Murphy N, Ivanković A (2011) Transferability of adhesive fracture toughness measurements between peel and TDCB test methods for a nano-toughened epoxy. Adhesion Society. http://hdl.handle.net/10197/4765

  480. McAuliffe D, Karač A, Murphy N, Ivanković A (2012) Determination of the cohesive strength and toughening mechanisms of a nano-modified adhesive under a triaxial stress. Adhesion Society

  481. McAuliffe D (2012) Fracture toughness characterisation of a nano-modified structural adhesives. PhD thesis, University College Dublin

  482. Cooper V, Ivankovic A, Karač A, McAuliffe D, Murphy N (2012) Effects of bond gap thickness on the fracture of nano-toughened epoxy adhesive joints. Polymer 53(24):5540–5553. https://doi.org/10.1016/j.polymer.2012.09.049

    Article  Google Scholar 

  483. Georgiou I, Ivanković A, Kinloch AJ, Tropša V (2003) Rate dependent fracture behaviour of adhesively bonded joints. In: Pavan A, Blackman BRK, Williams JG (eds) Fracture of polymers, composites and adhesives II, volume 32 of European Structural Integrity Society, pp 317 – 328. Elsevier, Amsterdam

  484. Georgiou I, Hadavinia H, Ivanković A, Kinloch AJ, Tropša V, Williams JG (2003) Cohesive zone models and the plastically-deforming peel test. J Adhes 79:239–265

    Article  Google Scholar 

  485. Cooper V, Ivanković A, Karač A (2008) A mode I fracture behaviour analysis of adhesively bonded joints. In: European conference on fracture, volume 17, Brno, Czech Republic

  486. Cooper VJ (2010) The fracture behaviour of nano-toughened structural epoxy adhesives. PhD thesis, University College Dublin

  487. Tabaković A, Karač A, Ivanković A, Gibney A, McNally C, Gilchrist MD (2010) Modelling the quasi-static behaviour of bituminous material using a cohesive zone model. Eng Fract Mech 77:2403–2418

    Article  Google Scholar 

  488. Carolan D (2011) Mechanical and fracture properties of PCBN as a function of rate and temperature. PhD thesis, University College Dublin

  489. Petrović M (2011) The behaviour of polycrystalline diamonds as a function of rate and temperature. PhD thesis, University College Dublin

  490. Carolan D, Ivanković A, Murphy N (2012) Numerical investigation into dynamic fracture of pcbn. Key Eng Mater 488:553–556

    Google Scholar 

  491. Carolan D, Ivanković A, Murphy N (2013) A combined experimental-numerical investigation of fracture of polycrystalline cubic boron nitride. Eng Fract Mech 99:101–117

    Article  Google Scholar 

  492. Alveen P, McNamara D, Carolan D, Murphy N, Ivanković A (2014) Analysis of two-phase ceramic composites using micromechanical models. Comput Mater Sci 92:318–324

    Article  Google Scholar 

  493. McNamara D, Alveen P, Carolan D, Murphy N, Ivanković A (2014) Micromechanical study of strength and toughness of advanced ceramics. Proc Mater Sci 3:1810–1815

    Article  Google Scholar 

  494. Alveen P (2015) An experimental-numerical investigation into the properties of polycrystalline cubic boron nitride towards materials optimisation. PhD thesis, University College Dublin

  495. Manchanda R (2015) A general poro-elastic model for pad-scale fracturing of horizontal wells. A general poro-elastic model for pad-scale fracturing of horizontal wells. PhD thesis, University of Texas at Austin

  496. McNamara D, Alveen P, Carolan D, Murphy N, Ivanković A (2015) Numerical analysis of the strength of polycrystalline diamond as a function of microstructure. Int J Refract Metal Hard Mater 52:195–202

    Article  Google Scholar 

  497. McNamara D (2015) The mechanical and fracture properties of polycrystalline diamond as a function of microstructure. PhD thesis, University College Dublin

  498. Lee D (2017) A model for hydraulic fracturing and proppant placement in unconsolidated sands. PhD thesis, University of Texas at Austin

  499. Yi S (2018) Development of computationally efficient 2D and pseudo-3D multi-fracture models with applications to fracturing and refracturing. PhD thesis, University of Texas at Austin

  500. Sabbagh-Yazdi SR, Farhoud A, Gharebaghi SA (2018) Simulation of 2D linear crack growth under constant load using GFVM and two-point displacement extrapolation method. Appl Math Model. https://doi.org/10.1016/j.apm.2018.05.022

    Article  MathSciNet  MATH  Google Scholar 

  501. Pindera M-J (1991) Local/global stiffness matrix formulation for composite materials and structures. Compos Eng 1(2):69–83

    Article  Google Scholar 

  502. Aboudi J, Pindera M-J, Arnold SM (1994) Elastic response of metal matrix composites with tailored microstructures to thermal gradients. Int J Solids Struct 31:1393–1428

    Article  MATH  Google Scholar 

  503. Aboudi J (2002) Micromechanical analysis of the fully coupled finite thermoelastic response of rubberlike matrix composites. Int J Solids Struct 39:2587–2612

    Article  MATH  Google Scholar 

  504. Aboudi J, Pindera M-J, Arnold SM (2002) High-fidelity generalized method of cells for inelastic periodic multiphase materials. Technical report, NASA TM-2002-211469

  505. Zhong Y, Pindera M-J, Arnold S (2002) Efficient reformulation of HOTFGM: heat conduction with variable thermal conductivity. NASA CR 2002-211910

  506. Aboudi J, Pindera M-J, Arnold SM (2003) Higher-order theory for periodic multiphase materials with inelastic phases. Int J Plast 19:805–847

    Article  MATH  Google Scholar 

  507. Bansal Y, Pindera M-J (2003) Efficient reformulation of the thermo-elastic higher-order theory for FGMs. J Therm Stresses 26(11–12):1055–1092

    Article  Google Scholar 

  508. Arnold SM, Bednarcyk B, Aboudi J (2004) Comparison of the computational efficiency of the original versus reformulated high-fidelity generalized method of cells. Technical report, NASA/TM-2004-213438

  509. Bansal Y, Pindera M-J (2004) Testing the predictive capability of the high-fidelity generalized method of cells using an efficient reformulation. Technical report, NASA/CR-2004-213043

  510. Bednarcyk BA, Arnold SM, Aboudi J, Pindera M-J (2004) Local field effects in titanium matrix composites subject to fiber-matrix debonding. Int J Plast 20:1707–1737

    Article  MATH  Google Scholar 

  511. Pindera M-J, Bansal Y, Zhong Y (2004) Finite-Volume Direct Averaging Theory for Functionally Graded Materials (FVDAT-FGM). Technical report, NASA Disclosure of Invention and New Technology Form 1679

  512. Zhong Y, Bansal Y, Pindera M-J (2004) Efficient reformulation of the thermal higher-order theory for FGM’s with variable thermal conductivity. Int J Comput Eng Sci 5(4):795–831

    Google Scholar 

  513. Aboudi J (2005) Micromechanically established constitutive equations for multiphase materials with viscoelastic–viscoplastic phases. Mech Time-Depend Mater 9:121–145

    Article  Google Scholar 

  514. Aboudi J, Gilat R (2005) Micromechanical analysis of lattice blocks. Int J Solids Struct 42:4372–4392

    Article  MATH  Google Scholar 

  515. Cavalcante MAA (2006) Modelling of the transient thermo-mechanical behavior of composite material structures by the finite-volume theory. Master’s thesis, Federal University of Alagoas, Maceio, Alagoas, Brazil

  516. Pindera M-J, Bansal Y (2006) Finite volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int J Plast 22:775–825

    Article  MATH  Google Scholar 

  517. Bruck HA, Gilat R, Aboudi J, Gershon AL (2007) A new approach for optimizing the mechanical behavior of porous microstructures for porous materials by design. Modell Simul Mater Sci Eng 15:653–674

    Article  Google Scholar 

  518. Cavalcante MAA, Marques SPC, Pindera M-J (2007) Parametric formulation of the finite-volume theory for functionally graded materials—part I: analysis. ASME J Appl Mech 74:935–945

    Article  Google Scholar 

  519. Cavalcante MAA, Marques SPC, Pindera M-J (2007) Parametric formulation of the finite-volume theory for functionally graded materials—part II: numerical results. ASME J Appl Mech 74:946–957

    Article  Google Scholar 

  520. Drago AS, Pindera M-J (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67(6):1243–63

    Article  Google Scholar 

  521. Gattu M (2007) Parametric finite volume theory for periodic heterogeneous materials. Master’s thesis, University of Virginia, Charlottesville, VA, USA

  522. Pindera M-J, Bansal Y (2007) On the micromechanics-based simulation of metal–matrix composite response. J Eng Mater Technol 129(3):468–82

    Article  Google Scholar 

  523. Ryvkin M, Aboudi J (2007) The effect of fiber loss in periodic composites. Int J Solids Struct 44:3497–3513

    Article  MATH  Google Scholar 

  524. Bednarcyk BA, Aboudi J, Arnold SM, Sullivan RM (2008) Analysis of space shuttle external tank spray-on foam insulation with internal pore pressure. J Eng Mater Technol 130:041005–0410016

    Article  Google Scholar 

  525. Cavalcante MAA, Marques SPC, Pindera M-J (2008) Computational aspects of the parametric finite-volume theory for functionally graded materials. Comput Mater Sci 44:422–438

    Article  Google Scholar 

  526. Gattu M, Khatam H, Drago AS, Pindera M-J (2008) Parametric finite-volume micromechanics of uniaxial, continuously-reinforced periodic materials with elastic phases. J Eng Mater Technol 130:31015–31030

    Article  Google Scholar 

  527. Paulino GH, Pindera M-J, Dodds RH, Rochinha FE, Dave EV, Chen L (2008) Multiscale and functionally graded materials. In: AIP conference proceedings, vol 973. Melville, New York

  528. Cavalcante MAA, Marques SPC, Pindera M-J (2009) Transient thermo-mechanical analysis of a layered cylinder by the parametric finite-volume theory. J Therm Stresses 32:112–134

    Article  Google Scholar 

  529. Gao X, Song Y, Sun Z (2009) Quadrilateral subcell based finite volume micromechanics theory for multiscale analysis of elastic periodic materials. ASME J Appl Mech 76:011013–1

    Article  Google Scholar 

  530. Khatam H, Pindera M-J (2009) Parametric finite-volume micromechanics of periodic materials with elastoplastic phases. Int J Plast 25:1386–1411

    Article  MATH  Google Scholar 

  531. Khatam H, Pindera M-J (2009) Thermo-elastic moduli of lamellar composites with wavy architectures. Compos B Eng 40(1):50–64

    Article  Google Scholar 

  532. Khatam H, Chen L, Pindera M-J (2009) Elastic and plastic response of perforated plates with different porosity architectures. Trans ASME J Eng Mater Technol 131(3):031014–031015

    Article  Google Scholar 

  533. Aboudi J, Freed Y (2010) Shape memory alloys: manufacture properties and applications. Micromechanical modeling of shape memory alloy composites. Nova Science Publishers, New York

    Google Scholar 

  534. Bednarcyk BA, Aboudi J, Arnold SM, Sullivan RM (2010) Micromechanics modeling of composites subjected to multiaxial progressive damage in the constituents. AIAA J 48:1367–1378

    Article  Google Scholar 

  535. Haj-Ali R, Aboudi J (2010) Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites. Int J Solids Struct 47:3447–3461

    Article  MATH  Google Scholar 

  536. Khatam H, Pindera M-J (2010) Plasticity-triggered architectural effects in periodic multilayers with wavy microstructures. Int J Plast 26(2):273–287

    Article  MATH  Google Scholar 

  537. Aboudi J (2011) The effect of anisotropic damage evolution on the behavior of ductile and brittle matrix composites. Int J Solids Struct 48:2102–2119

    Article  Google Scholar 

  538. Cavalcante MAA, Marques SPC, Pindera M-J (2011) Transient finite-volume analysis of a graded cylindrical shell under thermal shock loading. Mech Adv Mater Struct 18:53–67

    Article  Google Scholar 

  539. Cavalcante MAA, Khatam H, Pindera M-J (2011) Homogenization of elastic–plastic periodic materials by FVDAM and FEM approaches—an assessment. Compos B Eng 42:1713–1730

    Article  Google Scholar 

  540. Chareonsuk J, Vessakosol P (2011) Numerical solution for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method. Appl Therm Eng 31:213–27

    Article  Google Scholar 

  541. Khatam H, Pindera M-J (2011) Plastic deformation modes in perforated sheets and their relation to yield and limit surfaces. Int J Plast 27(10):1537–59

    Article  MATH  Google Scholar 

  542. Carolan D, Tuković Ž, McNamara D, Alveen P, Murphy N, Ivanković A (2012) Effect of microstructure on the fracture toughness of polycrystalline cubic boron nitride. In: 7th OpenFOAM workshop, Darmstadt, Germany

  543. Cavalcante MAA, Pindera M-J (2012) Generalized finite-volume theory for elastic stress analysis in solid mechanics—Part I: framework. ASME J Appl Mech 79:051006

  544. Cavalcante MAA, Pindera M-J (2012) Generalized finite-volume theory for elastic stress analysis in solid mechanics—part II: results. ASME J Appl Mech 79:051007

  545. Cavalcante MAA (2012) Generalized finite-volume micromechanics theory for heterogeneous materials. PhD thesis, University of Virginia

  546. Khatam H, Pindera M-J (2012) Microstructural scale effects in the nonlinear elastic response of bio-inspired wavy multilayers undergoing finite deformation. Compos B Eng 43(3):869–84

    Article  Google Scholar 

  547. Cavalcante MAA, Pindera M-J (2013) Generalized FVDAM, theory for periodic materials with elastic- plastic phases. In: CILAMCE, (2013) Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering. ABMEC, Pirenpólis, GO, Brazil

  548. Cavalcante MAA, Pindera M-J (2014) Generalized FVDAM theory for periodic materials undergoing finite deformations—part I: framework. ASME J Appl Mech 81(2):021005–021010

    Article  Google Scholar 

  549. Cavalcante MAA, Pindera M-J (2014) Generalized FVDAM theory for periodic materials undergoing finite deformations—part II: numerical results. ASME J Appl Mech 81(2):021006–021012

    Article  Google Scholar 

  550. Cardiff P, Leonard M, Murphy N, Ivanković A (2014) Fracture toughness optimization of nano-toughened structural adhesives: a representative volume element approach. In: Proceedings of the 37th annual meeting of the Adhesion Society, San Diego, CA, USA

  551. Leonard M (2014) Micro-mechanical modelling of toughening mechanisms in nano-toughened structural adhesives. PhD thesis, University College, Dublin

  552. Tu W, Pindera M-J (2014) Cohesive zone-based damage evolution in periodic materials via finite volume homogenization. ASME J Appl Mech 81(10):1–12

  553. Carolan D, Ivankovic A, Chong HM, Kinloch AJ, Taylor AC (2015) Co-continuous polymer systems: a numerical investigation. Comput Mater Sci 98:24–33

  554. Tu W (2016) CZM-based finite-volume homogenization and optimization of periodic composites. PhD thesis, University of Virginia

  555. Chen Q, Wang G, Chen X, Geng J (2017) Finite-volume homogenization of elastic/viscoelastic periodic materials. Compos Struct 182:457–470

    Article  Google Scholar 

  556. Chen Q, Wang G, Pindera M-J (2018) Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: theory and validation. Eur J Mech A Solids. https://doi.org/10.1016/j.euromechsol.2018.02.004

  557. Chen Q, Tu W, Liu R, Chen X (2018) Parametric multiphysics finite-volume theory for periodic composites with thermo-electro-elastic phases. J Intell Mater Syst Struct 29:530–552

    Article  Google Scholar 

  558. Ye J, Hong Y, Cai H, Wang Y, Zhai Z, Shi B (2018) A new three-dimensional parametric FVDAM for investigating the effective elastic moduli of particle-reinforced composites with interphase. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1452321

  559. Bijelonja I, Muzaferija S, Demirdžić I (2000) Some computational aspects of finite volume analysis of solid body deformation. In: Proceedings of 3rd congress of Croatian Society of Mechanics, Dubrovnik, Croatia, pp 261–267

  560. Cross M, Walshaw C, Williams AJ, Slone AK, Croft TN, McManus K (2003) Parallel processing for nonlinear problems. In: Oñate E, Owen DRJ (eds) VII international conference on computational plasticity, CIMNE, Barcelona, Spain

  561. Demirdžić I, Džaferović E, Ivanković A (2003) Predicting residual stresses due to solidification in cast plastic plates. In: 4th international congress of Croatian Society of Mechanics

  562. Williams AJ, Slone AK, Croft TN, Cross M (2003) A mixed Eulerian–Lagrangian approach for metal forming. In: 6th ESAFORM conference on Metal Forming, Salerno, Italy

  563. Kalkan H (2011) A combined experimental-numerical investigation on aluminium extrusion. Master’s thesis, Atilim University, Ankara, Turkey

  564. Mohan J, Karač A, Murphy N, Ivanković A (2011) An experimental and numerical investigation of the mixed-mode fracture toughness and lap shear strength of aerospace grade composite joints. Key Eng Mater 488:549–552

    Article  Google Scholar 

  565. Cardiff P, De Jaeger P, Tuković Ž, Ivanković A (2014) A finite approach to simulation of wire rolling. In: Joint symposium of Irish Mechanics Society and Irish Society for Scientific and Engineering Computation, Galway

  566. Cardiff P, Tuković Ž, Ivankovic A, De Jaeger P (2018) Development of an arbitrary Lagrangian–Eulerian finite volume method for metal forming simulation in OpenFOAM. In: The 13th OpenFOAM workshop (OFW13), Shanghai, China, June 24–29

  567. Clancy M, Cardiff P, De Jaeger P, Ivankovic A (2018) Implementation of advanced plasticity models in OpenFOAM. In: The 13th OpenFOAM Workshop (OFW13), Shanghai, China, June 24–29

  568. Grossman D, Bailey C, Pericleous K, Slone AK (2002) Computational modelling of blood flow and artery wall interaction. In: 9th workshop on the finite element methods in biomedical engineering biomechanics and related fields, University of Ulm, Germany

  569. Anthony CM (2003) Finite volume modelling of the human leg. Master’s thesis, Imperial College London

  570. Alakija O, Ivanković A, Karač A (2005) Finite volume solution to high rate wave propagation through a lung alveoli stack. In: IUTAM symposium on impact biomechanics: from fundamental insights to applications, pp 281–288

  571. Quinn NM, Ivanković A, Karač A (2007) An experimental and numerical investigation into the deformation profiles of mock arteries. In: ASME Summer Bioengineering Conference

  572. Quinn NM, Ivanković A, Karač A (2007) A combined experimental and numerical investigation into early atherosclerosis. In: The fifteenth UK conference of the association of computational mechanics in engineering, Glasgow, UK, 2–3 April, 2007. Civil-Comp Press. https://doi.org/10.4203/ccp.85.11

  573. Safari A, Ivanković A, Tuković Ž (2008) Numerical modelling of viscoelastic response of bacterial biofilm to mechanical stress. In: Bioengineering in Ireland conference, Radisson Hotel, Sligo, January, pp 25–26

  574. Kanyanta V, Ivanković A, Karač A (2009) Accurate prediction of blood flow transients: a fluid–structure interaction approach in hemodynamic wall shear stress. In: Nithiarasu P (ed) 1st international conference on mathematical and computational biomedical engineering—CMBE2009, Swansea, UK

  575. Kanyanta V (2009) Towards early diagnosis of atherosclerosis: wall shear prediction. PhD thesis, University College Dublin, Ireland

  576. Kelly S (2009) Thrombus growth and its influence on the stress distribution in patient-based abdominal aortic aneurysm models. PhD thesis, University College Dublin

  577. Cardiff P, Karač A, Flavin R, FitzPatrick D, Ivanković A (2010) The development of a numerical model of the hip joint for complex soft tissue reconstructions around the hip joint. In: 13th annual Sir Bernard Crossland symposium, University College Dublin, Dublin, Ireland

  578. Cardiff P, Karač A, Flavin R, FitzPatrick D, Ivanković A (2011) The development of a numerical model of the hip joint. In 17\(^{th}\) Bioengineering In Ireland, Galway, Ireland

  579. Cardiff P, Karač A, Flavin R, FitzPatrick D, Ivanković A (2011) Numerical analysis of the hip joint bones in contact. In: ACME-UK Heriott-Watt University, Edinburgh, Scotland

  580. Quinn N (2011) Towards early diagnosis of atherosclerosis: combined experimental and numerical investigation into the deformation of mock arterial models. PhD thesis, University College Dublin

  581. Cardiff P, Karač A, Flavin R, FitzPatrick D, Ivanković A (2012) Modelling the muscles for hip joint stress analysis using a finite volume methodology. In: 18th Bioengineering In Ireland, Belfast, Northern Ireland

  582. Cardiff P, Karač A, FitzPatrick D, Flavin R, Ivanković A (2014) Development of mapped stress-field boundary conditions based on a Hill-type muscle model. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm

    Article  MathSciNet  Google Scholar 

  583. Khalili Parsa H (2014) Compression tests on fluid-filled gelatine microcapsules: a combined experimental/numerical study. PhD thesis, University College Dublin

  584. Safari A (2015) A combined experimental and numerical study of biofilm detachment. PhD thesis, University College Dublin

  585. Fitzgerald K, Cardiff P, Flavin R, Ivankovic A (2016) Calculation of hip joint contact pressures using a high resolution finite volume model with CT-based properties. In: Bioengineering in Ireland

  586. Fitzgerald K, Cardiff P, Flavin R, Ivankovic A (2017) Towards in silico analysis of total hip arthroplasty mechanics. In: XXVI Congress of the International Society of Biomechanics, Brisbane, Australia

  587. Muralidharan L, Cardiff P, Flavin R, Ivankovic A (2017) A numerical model for the calculation of ankle joint stresses. In: XXVI Congress of the International Society of Biomechanics, Brisbane, Australia

  588. Kovačević A, Stošić N, Smith IK (2002) Solid–fluid interaction in screw compressors. In: XVI International Compressor Engineering Conference at Purdue

  589. Kovačević A, Stošić N, Smith IK (2002) Three-dimensional modelling of solid–fluid interaction as a design tool in screw compressors. In: International design conference—DESIGN 2002, Dubrovnik, Croatia

  590. Kovačević A, Stošić N, Smith IK (2002) The influence of rotor deflection upon the screw compressor process. In: Schraubencompressor tagung (Screw compressor meeting), Dortmund, Germany

  591. Kovačević A, Stošić N, Smith IK (2002) Numerical simulation of fluid flow and solid structure in screw compressors. In: Proceedings of 2002 ASME Congress, New Orleans, USA, 2002. Symposium on the analysis and applications of heat pump and refrigeration systems

  592. Kovačević A, Stošić N, Smith IK (2003) Fluid–solid interaction for extension of range in screw machine application. In: Advances of CFD in fluid machinery design, ImechE Seminar, London, UK

  593. Kovačević A, Stošić N, Smith IK, Mujić E (2004) Fluid–solid interaction in the design of multifunctional screw machines. In: 8th international design conference—design 2004, vol 2. Dubrovnik, Croatia, pp 1289–1295

  594. Kovačević A, Mujić E, Stošić N, Smith IK (2011) Extending the role of computational fluid dynamics in screw machines. J Process Mech Eng Part E Proc Inst Mech Eng, pp 83–97

  595. I. Bijelonja (2011) A finite volume method for a geomechanics problem. In: Proceedings of the 22nd international DAAAM symposium, pp 323–324

  596. Demirdžić I, Muzaferija S, Perić M (1977) Advances in computation of heat transfer, fluid flow, and solid body deformation using finite volume approaches. In: Sparrow EM, Minkowycz WJ (ed) Advances in numerical heat transfer. Taylor and Francis, pp 59–96

  597. Bijelonja I (2005) Finite volume method analysis of large strain elasto-plastic deformation. In: The 16th DAAAM International Symposium, Opatia, Croatia

  598. Sabbagh-Yazdi SR, Alkhamis MT, Mastorakis NE, Esmaili M (2008) Finite volume analysis of two-dimensional strain in a thick pipe with internal fluid pressure. Int J Math Models Methods Appl Sci 2:162–167

    Google Scholar 

  599. Sabbagh-Yazdi SR, Mastorakis NE, Esmaili M (2008) Explicit 2D matrix free Galerkin finite volume solution of plane strain structural problems on triangular meshes. Int J Math Comput Simul 2:1–8

    Google Scholar 

  600. Alkhamis MT, Sabbagh-Yazdi SR, Esmaeili M, Wegian FM (2008) Utilizing NASIR Galerkin finite volume analyzer for 2D plane strain problems under static and vibrating concentrated loads. Jordan J Civ Eng 2:335–343

    Google Scholar 

  601. Sabbagh-Yazdi SR, Alimohammadi S, Mastorakis NE (2009) Comparison of finite element and finite volume solvers results for plane-stress displacements in plate with oval hole. In: Proceedings of the 4th IASME/WSEAS international conference on continuum mechanics CM’09, pp 168–173

  602. Sabbagh-Yazdi SR, Amiri-Saadatabadi T (2011) Sequential computations of two-dimensional temperature profiles and thermal stresses on an unstructured triangular mesh by GFVM method. Int J Civ Eng 9:171–182

    Google Scholar 

  603. Sabbagh-Yazdi SR, Esmaili M, Alkhamis MT (2011) Symmetric conditions for strain analysis in a long thick cylinder under internal pressure using NASIR unstructured GFVM solver. Jordan J Civ Eng 5:258–267

    Google Scholar 

  604. Sabbagh-Yazdi SR, Ali-Mohammadi S (2011) Performance evaluation of iterative GFVM on coarse unstructured triangular meshes and comparison with matrix manipulation based solution methods. Sci Iran 18:131–138

    Article  Google Scholar 

  605. Sabbagh-Yazdi SR, AliMohammadi S, Pipelzadeh MK (2012) Unstructured finite volume method for matrix-free explicit solution of stress–strain fields in two-dimensional problems with curved boundaries in equilibrium condition. Appl Math Model 36:2224–2236

    Article  MATH  Google Scholar 

  606. Sabbagh-Yazdi SR, Bayatlou M (2012) Equilibrium condition nonlinear modeling of a cracked concrete beam using a 2D Galerkin finite volume solver. Comput Methods Civ Eng 3:63–76

    Google Scholar 

  607. Bailey C, Chow P, Cross M, Pericleous K, Taylor GA, Croft TN, Wheeler D, Lu H (1999) Finite volume methods for multiphysics problems. In: Haenel D, Vilsmeirer R, Benkhaldoun F (eds) Finite volumes for complex applications, II—problems and perspectives, Duisburg, Germany

  608. Hitchings D, Davies GAO, Kamoulakos A (1987) Linear static benchmarks. International Association for the Engineering Analysis Community and National Agency for Finite Element Methods and Standards (NAFEMS), Glasgow, UK

  609. Voller VR (2009) Basic control volume finite element methods for fluids and solids. World Scientific, Singapore

Download references

Acknowledgements

The first author gratefully acknowledges financial support from Bekaert through the University Technology Centre (UTC), and from the Irish Composites Centre (IComp). In addition, this publication has emanated from research supported in part by the Irish Research Council through the Laureate programme, grant number IRCLA/2017/45, and I-Form, via a research grant from Science Foundation Ireland (SFI) under Grant No. 16/RC/3872 and is co-funded under the European Regional Development Fund. Furthermore, the valuable comments of Prof. Alojz Ivanković (University College Dublin), Prof. Aleksandar Karač (University of Zenica), Prof. Mark Cross (Swansea University), as well as a number of journal reviewers are gratefully acknowledged.

Funding

The first author gratefully acknowledges financial support from Bekaert through the University Technology Centre (UTC), and from the Irish Composites Centre (IComp). In addition, this publication has emanated from research supported in part by the Irish Research Council through the Laureate programme, grant number IRCLA/2017/45, and I-Form, via a research grant from Science Foundation Ireland (SFI) under Grant No. 16/RC/3872 and is co-funded under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the article concept and design, as well as performing the literature review and data analysis. The first draft of the manuscript was written by Philip Cardiff and both authors commented on and critically revised versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Cardiff.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Table of Most Cited Articles Related to the Finite Volume Method for Solid Mechanics

Table 1 lists the most cited articles related to the finite volume method for solid mechanics; the references have been listed in order of decreasing number of citations, and only articles with greater than fifty citations have been included, according to Google Scholar citations on 25th August 2018. As noted in the body of the article, care should be taken when interpreting the data, as the number of citations may not be directly proportional to impact on the field; for example, Weller et al. [193] has by far the greatest number of citations; however, a significant percentage of its received citations are related to its computational fluid mechanics developments, rather than its solid mechanics contributions.

Table 1 Most cited articles related to the finite volume method for solid mechanics from Google Scholar citations on 25th August 2018

Appendix 2: Overview of the Discretisation Used in HOTFGM/HFGMC/FVDAM Approaches

There are a variety of related methods with finite volume attributes which have been designed for the analysis of heterogenous microstructures. The related methods include the higher-order theory for functionally graded material (HOTFGM) [339], the high-fidelity generalised method of cells (HFGMC) [340,341,342,343], and the finite volume direct averaging micromechanics (FVDAM) theory [344, 345]. A brief summary of the methods is given here, and readers are referred to Aboudi et al. [339], Bansal and Pindera [345] and Cavalcante et al. [38] for further details.

The HOTFGM and HFGMC approaches start by spatially discretising the solution domain into rectangular so-called generic cells, which are further split into a second discretisation level containing four rectangular sub-cells (Fig. 32); for brevity and clarity, the description here has been limited to two dimensions; however, the approaches have been extended to three dimensions, as described in Aboudi et al. [339]. As a consequence of the assumed orthogonal Cartesian mesh, curved interfaces between material phases are approximated in a castellated staircase manner, as shown in Fig. 32; this limitation was later removed by the FVDAM approach with extension to unstructured quadrilateral meshes. By considering the unit cell of a periodic material, the displacement field can be decomposed into average and fluctuating components, \(\varvec{u} = \bar{\varvec{u}} + \varvec{u}'\), where the average displacement is determined from the specified macroscopic average strains, \(\bar{\varvec{u}} = \bar{\varvec{\epsilon }} \varvec{x}\). Within each sub-cell, the fluctuating displacement is then assumed to vary quadratically as a function of the local coordinates, \(\bar{y}_2\) and \(\bar{y}_3\):

$$\begin{aligned} \varvec{u}' (\bar{y}_2, \bar{y}_3)= & {} \varvec{W}_{00} + \bar{y}_2 \varvec{W}_{10} + \bar{y}_3 \varvec{W}_{01} \nonumber \\&+ \frac{1}{2}\left( 3 \bar{y}_2^2 - \frac{h^2}{4} \right) \varvec{W}_{20} + \frac{1}{2}\left( 3 \bar{y}_3^2 - \frac{l^2}{4} \right) \varvec{W}_{02} \end{aligned}$$
(82)

where h and l are the width and height respectively of the sub-cell; \(\varvec{W}_{00}\), \(\varvec{W}_{10}\), \(\varvec{W}_{01}\), \(\varvec{W}_{20}\), and \(\varvec{W}_{02}\) are unknown vector displacement coefficients, each with three components; the \(\varvec{W}_{00}\) component corresponds to the unknown displacement at the centre of the sub-cell, while the remaining coefficients correspond to higher-order displacement contributions within the sub-cell. Accordingly, there are \(5 \times 3 = 15\) unknown displacement coefficients within each sub-cell and hence \(4 \times 15 = 60\) within each generic cell; in three dimensions, there are 168 unknown quantities. For brevity here, the \((\gamma )\) and \((\beta )\) superscripts indicating the sub-cell have been dropped i.e. \(\bar{y}_2 = \bar{y}_2^{(\beta )}\), \(\bar{y}_3 = \bar{y}_3^{(\gamma )}\), etc. It is also worth pointing out that although the approach has been developed for periodic microstructures, the method can also be used for general structural stress analysis by assuming the average displacement \(\bar{\varvec{u}}\) to be zero.

Fig. 32
figure 32

a Unit cell of a periodic material with microstructure discretised into rectangular building blocks. b Two-level discretisation employed by HFGMC into (qr) generic cells further subdivided into four (bc) subcells. c Single-level discretisation employed in the FVDAM theory into stand-alone (bc) sub-volumes. Figure taken from Cavalcante et al. [38]. (Color figure online)

To determine the unknown displacement coefficients, the 0th, 1st and 2nd moments of momentum conservation are applied to each sub-cell, in addition to the enforcement of traction and displacement continuity between sub-cells and generic cells, and inclusion of boundary conditions. A characteristic of the method, which is not possessed by the other finite volume variants, is the enforcement of these so-called moments of the governing equation. To achieve this, the governing equation (Eq. 1), where temporal and body force terms have been neglected, is written in terms of a so-called stress moment \(\varvec{S}\):

$$\begin{aligned} \oint _\Gamma \varvec{n} \cdot \varvec{S} \;\text {d}\Gamma= & {} \varvec{0} \end{aligned}$$
(83)

with the stress moment defined as:

$$\begin{aligned} \varvec{S} = \frac{1}{h l} \int _{-\frac{h}{2}}^{\frac{h}{2}} \int _{-\frac{l}{2}}^{\frac{l}{2}} \left[ \varvec{\sigma } \, \bar{y}_2^m \, \bar{y}_3^n \right] \; \text {d} \bar{y}_2 \; \text {d} \bar{y}_3 \end{aligned}$$
(84)

The exponents m and n indicate the order of the equation; for example, when \(m = n = 0\), the relation reduces to conservation of force; when \(m = 1\) and \(n =1\) the relation represents conservation of angular momentum; while for \(m > 1\) and \(n > 1\) the relation represents conservation of higher stress moments. Note: m is not related to the time-step counter in Eq. (4).

In this way, it is possible to assemble a system of 60N algebraic equations of the standard form, \([\varvec{K}][\varvec{U}] = [\varvec{F}]\), where N is the number of generic cells in the solution domain, \([\varvec{U}]\) is a vector of unknown displacement coefficients \(\varvec{W}\), the global stiffness matrix \([\varvec{K}]\) is a function of the sub-cell dimensions and mechanical properties, and the global force vector \([\varvec{F}]\) contains contributions from boundary conditions and nonlinear material stresses. The linear system is inverted to give the displacements distributions within the sub-cells.

The HOTFGM and HFGMC approaches described above provide the basis for the subsequent FVDAM approach; the FVDAM approach differs from the HOTFGM and HFGMC methods in a number of ways:

  1. (a)

    The two-level spatial domain decomposition (generic cells and sub-cells) of the HOTFGM/HFGMC methods is replaced by one-level of discretisation/cells;

  2. (b)

    The displacement coefficients within each cell \(\varvec{W}\) are expressed in terms of surface-averaged displacements i.e. displacement averaged at each cell surface;

  3. (c)

    Higher order moments of the equilibrium equation are not used;

  4. (d)

    In the parametric form of the FVDAM, the use of parametric mapping with a parent/reference cell allows the use of an unstructured mesh (similar to the finite element method), instead of the orthogonal Cartesian mesh of the HOTFGM/HFGMC approaches (see Fig. 32);

  5. (e)

    In the assembled system of algebraic equations \([\varvec{K}][\varvec{U}] = [\varvec{F}]\), the solution vector \([\varvec{U}]\) contains cell surface-averaged displacements, as opposed to sub-cell displacement coefficients.

Further technicals details of the HOTFGM, HFGMC and FVDAM methods can be found in Cavalcante et al. [38], Aboudi et al. [339], Aboudi [340], Aboudi et al. [341], Haj-Ali and Aboudi [342, 343], Bansal and Pindera [344, 345] and Cavalcante and Pindera [349].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardiff, P., Demirdžić, I. Thirty Years of the Finite Volume Method for Solid Mechanics. Arch Computat Methods Eng 28, 3721–3780 (2021). https://doi.org/10.1007/s11831-020-09523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09523-0

Navigation