Skip to main content
Log in

Crack phase-field model equipped with plastic driving force and degrading fracture toughness for ductile fracture simulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study presents a novel phase-field model for ductile fracture by the introduction of both the plastic driving force and the degrading fracture toughness into crack phase-field computations based on the phenomenological justification for ductile fracture in elastoplastic materials. Assuming that the constitutive work density consists of elastic, pseudo-plastic and crack components, we derive the governing equations from local and global optimization problems within the continuum thermodynamics framework. In addition to the elastic strain energy, the plastic strain energy also works as a driving force to sustain damage evolution. Additionally, we introduce a degrading fracture toughness to reflect the evolution of micro-defects and their coalescences into each other that are caused by accumulated plastic deformation. Equipped with these ingredients, the proposed model realizes the reduction of both stiffness and fracture toughness to simulate the failure phenomena of elastoplastic materials. Several numerical examples are presented to demonstrate the capability of the proposed model in reproducing some typical ductile fracture behaviors. The findings and perspectives are subsequently summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Griffith AA (1921) Vi. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221(582–593):163–198

    MATH  Google Scholar 

  2. Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. J Proc 64:152–163

    Google Scholar 

  3. Ingraffea AR, Saouma V (1985) Numerical modeling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete: structural application and numerical calculation. Springer, Netherlands, pp 171–225

  4. Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1–3):307–330

    Article  MATH  Google Scholar 

  5. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  6. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  7. Wells GN, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

  8. Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346

    Article  MATH  Google Scholar 

  9. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Article  Google Scholar 

  10. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169

    Article  Google Scholar 

  11. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  12. Bažant ZP, Prat PC (1988) Microplane model for brittle-plastic material: I. Theory. J Eng Mech 114(10):1672–1688

    Google Scholar 

  13. Bazant ZP, Belytschko TB, Chang TP et al (1984) Continuum theory for strain-softening. J Eng Mech 110(12):1666–1692

    Google Scholar 

  14. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    MATH  Google Scholar 

  15. Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293

    Article  MATH  Google Scholar 

  16. Peerlings RH, de Borst R, Brekelmans WM, De Vree J (1996a) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    Article  MATH  Google Scholar 

  17. Peerlings Rd, Borst Rd, Brekelmans Wd, Vree Jd, Spee I (1996b) Some observations on localization in non-local and gradient damage models. Eur J Mech A Solids 15(6):937–953

    MATH  Google Scholar 

  18. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  19. Mumford DB, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math

  20. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  21. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  22. Miehe C, Welschinger F, Hofacker M (2010a) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  23. Miehe C, Hofacker M, Welschinger F (2010b) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  24. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    Article  MathSciNet  Google Scholar 

  26. Wu JY, Nguyen VP (2018) A length scale insensitive phase-field damage model for brittle fracture. J Mech Phys Solids 119:20–42

    Article  MathSciNet  Google Scholar 

  27. Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93(10):105504

    Article  Google Scholar 

  28. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  MATH  Google Scholar 

  29. Steinke C, Kaliske M (2019) A phase-field crack model based on directional stress decomposition. Comput Mech 63(5):1019–1046

    Article  MathSciNet  MATH  Google Scholar 

  30. Storm J, Supriatna D, Kaliske M (2020) The concept of representative crack elements for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121(5):779–805

    Article  MathSciNet  Google Scholar 

  31. Borden MJ, Hughes TJ, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MathSciNet  MATH  Google Scholar 

  32. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  MATH  Google Scholar 

  33. Kakouris E, Triantafyllou SP (2017) Phase-field material point method for brittle fracture. Int J Numer Methods Eng 112(12):1750–1776

    Article  MathSciNet  Google Scholar 

  34. Roy P, Pathrikar A, Deepu S, Roy D (2017) Peridynamics damage model through phase field theory. Int J Mech Sci 128:181–193

    Article  Google Scholar 

  35. Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a regularized model of dynamic fracture. Math Models Methods Appl Sci 20(07):1021–1048

    Article  MathSciNet  MATH  Google Scholar 

  36. Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143

    Article  MATH  Google Scholar 

  37. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  38. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178(1–2):113–129

    Article  Google Scholar 

  39. Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang X, Vignes C, Sloan SW, Sheng D (2017) Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput Mech 59(5):737–752

    Article  MathSciNet  Google Scholar 

  41. Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99

    Article  MathSciNet  Google Scholar 

  42. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  43. Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149–167

    Article  MathSciNet  MATH  Google Scholar 

  44. Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part ii. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput Methods Appl Mech Eng 294:486–522

    Article  MathSciNet  MATH  Google Scholar 

  45. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int J Plast 84:1–32

    Article  Google Scholar 

  46. Miehe C (2014) Variational gradient plasticity at finite strains. Part i: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput Methods Appl Mech Eng 268:677–703

    Article  MathSciNet  MATH  Google Scholar 

  47. Miehe C, Welschinger F, Aldakheel F (2014) Variational gradient plasticity at finite strains. Part ii: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Comput Methods Appl Mech Eng 268:704–734

    Article  MathSciNet  MATH  Google Scholar 

  48. Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166

    Article  MathSciNet  MATH  Google Scholar 

  49. Alessi R, Ambati M, Gerasimov T, Vidoli S, De Lorenzis L (2018) Comparison of phase-field models of fracture coupled with plasticity. In: Advances in computational plasticity. Springer, pp 1–21

  50. Dittmann M, Aldakheel F, Schulte J, Wriggers P, Hesch C (2018) Variational phase-field formulation of non-linear ductile fracture. Comput Methods Appl Mech Eng 342:71–94

    Article  MathSciNet  MATH  Google Scholar 

  51. Yin B, Kaliske M (2020) A ductile phase-field model based on degrading the fracture toughness: theory and implementation at small strain. Comput Methods Appl Mech Eng 366:113068

    Article  MathSciNet  MATH  Google Scholar 

  52. Kachanov L (1986) Introduction to continuum damage mechanics, vol 10. Springer, Berlin

    MATH  Google Scholar 

  53. Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, vol 185. Springer, Berlin

    Google Scholar 

  54. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131

    Google Scholar 

  55. Miehe C, Teichtmeister S, Aldakheel F (2016) Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos Trans R Soc A Math Phys Eng Sci 374(2066):20150170

    Article  MathSciNet  MATH  Google Scholar 

  56. Miehe C, Aldakheel F, Teichtmeister S (2017) Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int J Numer Methods Eng 111(9):816–863

    Article  MathSciNet  Google Scholar 

  57. Saanouni K, Hamed M (2013) Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: formulation and computational aspects. Int J Solids Struct 50(14–15):2289–2309

    Article  Google Scholar 

  58. Nguyen VD, Lani F, Pardoen T, Morelle X, Noels L (2016) A large strain hyperelastic viscoelastic–viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192–216

    Article  Google Scholar 

  59. Diamantopoulou E, Liu W, Labergere C, Badreddine H, Saanouni K, Hu P (2017) Micromorphic constitutive equations with damage applied to metal forming. Int J Damage Mech 26(2):314–339

    Article  Google Scholar 

  60. Brepols T, Wulfinghoff S, Reese S (2020) A gradient-extended two-surface damage-plasticity model for large deformations. Int J Plast 129:102635

    Article  Google Scholar 

  61. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  62. Yin B, Steinke C, Kaliske M (2020) Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method. Int J Numer Methods Eng 121(2):233–255

    Article  MathSciNet  Google Scholar 

  63. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer, New York

    MATH  Google Scholar 

  64. Matsubara S, Terada K (2021) A variationally consistent formulation of the thermo-mechanically coupled problem with non-associative viscoplasticity for glassy amorphous polymers. Int J Solids Struct 212:152–168

    Article  Google Scholar 

  65. Djouabi M, Ati A, Manach PY (2019) Identification strategy influence of elastoplastic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel. Int J Damage Mech 28(3):427–454

    Article  Google Scholar 

  66. Chung K, Lee C, Kim H (2014) Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity, part ii: boundary value problems. Int J Plast 58:35–65

    Article  Google Scholar 

  67. Ikeda K, Okazawa S, Terada K, Noguchi H, Usami T (2001) Recursive bifurcation of tensile steel specimens. Int J Eng Sci 39(17):1913–1934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Terada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Return mapping algorithm for internal variables

We show a pseudo-code for the local return mapping algorithm in Fig. 21. During this process, the plastic multiplier \(\lambda ^\mathrm {p}\) and flow tensor \(\varvec{{\mathfrak {n}}}\) are considered as internal variables to be determined. Also, to ensure incompressibility of the plastic deformation, an exponential mapping is utilized.

Fig. 21
figure 21

Return mapping algorithm

The residuals of two local differential equations yield

$$\begin{aligned}&{\mathsf {r}}^{\lambda ^\mathrm {p}}_{k}= -\left( ||{\varvec{\tau }_0}_{\mathrm {dev},k}||-\sqrt{\dfrac{2}{3}}r^\mathrm {p}_{0,k}-\dfrac{2{\eta }_{\mathrm {p}}}{3g\left( d\right) }\lambda ^\mathrm {p}_{k}\right) \end{aligned}$$
(A.1)
$$\begin{aligned}&{\mathsf {r}}^{\varvec{{\mathfrak {n}}}_{k}}=-\left( \dfrac{{\varvec{\tau }_0}_{\mathrm {dev},k}}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||}-\varvec{{\mathfrak {n}}}_{k}\right) , \end{aligned}$$
(A.2)

where the index k represents the iteration of the local Newton-Raphson scheme. By numerical linearization, its tangent matrix yields

$$\begin{aligned} \varvec{{\mathsf {k}}}=\left[ \begin{array}{cc} {\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}} \\ {\mathsf {k}}_{\varvec{{\mathfrak {n}}}\lambda ^\mathrm {p}} &{} {\mathsf {k}}_{\varvec{{\mathfrak {n}}}\varvec{{\mathfrak {n}}}} \end{array} \right] \end{aligned}$$
(A.3)

with diagonal components

$$\begin{aligned} \begin{aligned}&{\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}}= \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \varvec{b}^\mathrm {e}}: \left\{ \dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}_k\varvec{{\mathfrak {n}}}_k\right) \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}}{\partial \lambda ^\mathrm {p}} \right\} \\&\quad -\sqrt{\dfrac{2}{3}}\dfrac{\partial r^\mathrm {p}_{0,k}}{\partial \lambda ^\mathrm {p}}-\dfrac{2{\eta }_{\mathrm {p}}}{3g\left( d\right) }\\&\text {with}\quad \dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}}{\partial \lambda ^\mathrm {p}}\\&\quad = \left\{ \text {D}\exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) : \left( -2{\varDelta }t_{n+1}\varvec{{\mathfrak {n}}}\right) \right\} \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1} \end{aligned} \end{aligned}$$
(A.4)

and

$$\begin{aligned} \begin{aligned}&{\mathsf {k}}_{\varvec{{\mathfrak {n}}}\varvec{{\mathfrak {n}}}}= \dfrac{1}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||}\dfrac{\partial {\varvec{\tau }_0}_{\mathrm {dev},k}}{\partial \varvec{{\mathfrak {n}}}}- \dfrac{{\varvec{\tau }_0}_{\mathrm {dev},k}}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||^2}\otimes \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \varvec{{\mathfrak {n}}}} -\underline{\varvec{1}}_{sym.}\\&\quad = \left( \dfrac{1}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||}\dfrac{\partial {\varvec{\tau }_0}_{\mathrm {dev},k}}{\partial \varvec{b}^\mathrm {e}}- \dfrac{{\varvec{\tau }_0}_{\mathrm {dev},k}}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||^2}\otimes \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \varvec{b}^\mathrm {e}}\right) \\&\qquad :\dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}_k\varvec{{\mathfrak {n}}}_k\right) \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}}{\partial \varvec{{\mathfrak {n}}}} -\underline{\varvec{1}}_{sym.}\\&\text {with}\quad \dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}}{\partial \varvec{{\mathfrak {n}}}}\\&\quad = \underbrace{ \left\{ \text {D}\exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) : \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}\underline{\varvec{1}}_{sym.}\right) \right\} }_{iakl} *\underbrace{\varvec{b}^{\mathrm {e,tr}}_{n+1}}_{aj} \end{aligned} \end{aligned}$$
(A.5)

and coupling components

$$\begin{aligned} {\mathsf {k}}_{\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}}&= \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \varvec{b}^\mathrm {e}}: \dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}_k\varvec{{\mathfrak {n}}}_k\right) \cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}}{\partial \varvec{{\mathfrak {n}}}} \end{aligned}$$
(A.6)

and

$$\begin{aligned} {\mathsf {k}}_{\varvec{{\mathfrak {n}}}\lambda ^\mathrm {p}}&= \dfrac{1}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||}\dfrac{\partial {\varvec{\tau }_0}_{\mathrm {dev},k}}{\partial \lambda ^\mathrm {p}}- \dfrac{{\varvec{\tau }_0}_{\mathrm {dev},k}}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||^2}\dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \lambda ^\mathrm {p}}\nonumber \\&\quad = \left( \dfrac{1}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||}\dfrac{\partial {\varvec{\tau }_0}_{\mathrm {dev},k}}{\partial \varvec{b}^\mathrm {e}}- \dfrac{{\varvec{\tau }_0}_{\mathrm {dev},k}}{||{\varvec{\tau }_0}_{\mathrm {dev},k}||^2}\otimes \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev},k}||}{\partial \varvec{b}^\mathrm {e}}\right) \nonumber \\&\qquad : \left\{ \dfrac{\partial \exp \left( -2{\varDelta }t_{n+1}\lambda ^\mathrm {p}_k\varvec{{\mathfrak {n}}}_k\right) }{\partial \lambda ^\mathrm {p}}\cdot \varvec{b}^{\mathrm {e,tr}}_{n+1}\right\} . \end{aligned}$$
(A.7)

Here, \(\text {D}\exp \) denotes the derivative of the second order exponential tensor and \(\underline{\varvec{1}}_{sym.}\) is the fourth order symmetric identity tensor. Also, to show formulations explicitly in tensor notations, we define an operator \(*\) that denotes an inner product of the second basis of a fourth order tensor \({\mathbb {X}}\) and the first basis of a second order tensor \(\varvec{Y}\), which is shown in index notation as \(X_{iajk}Y_{aj}\).

B Components accounting for global tangent matrix

The component in Eq. (67) is written in an explicit form as

$$\begin{aligned} \dfrac{\partial \varvec{\tau }}{\partial \varvec{F}}&= {\left\{ \begin{array}{ll} g\left( d \right) \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {vol}}}{\partial \varvec{F}}+ g\left( d \right) \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {dev}}}{\partial \varvec{F}} \quad \text {for}\quad J^\mathrm {e}\ge 1 \\ \quad \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {vol}}}{\partial \varvec{F}}+ g\left( d \right) \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {dev}}}{\partial \varvec{F}} \quad \text {for}\quad J^\mathrm {e}< 1 \end{array}\right. } \end{aligned}$$
(B.1)

with

$$\begin{aligned} \begin{aligned} \dfrac{\partial \varvec{\tau }_0}{\partial \varvec{F}}&= \left\{ \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {vol}}}{\partial J^\mathrm {e}}\otimes \dfrac{\partial J^\mathrm {e}}{\partial \varvec{F}^\mathrm {e}}+ \dfrac{\partial {\varvec{\tau }_{0}}_{\mathrm {dev}}}{\partial \bar{\varvec{b}}^\mathrm {e}}:\dfrac{\partial \bar{\varvec{b}}^\mathrm {e}}{\partial \varvec{F}^\mathrm {e}} \right\} :\dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{F}}\\&= \bigg \{ \kappa {J^{\mathrm {e}}}^2\varvec{1}\otimes \varvec{F}^{\mathrm {e}-\mathrm {T}} +\mu {J^\mathrm {e}}^{-2/3}\\&\quad \text {dev}\bigg [\varvec{1}\ \overline{\otimes }\ \varvec{F}^\mathrm {e}+\varvec{F}^\mathrm {e}\ \underline{\otimes }\ \varvec{1} -\dfrac{2}{3}\varvec{b}^\mathrm {e}\otimes \varvec{F}^{\mathrm {e}-\mathrm {T}}\bigg ] \bigg \}:\dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{F}} . \end{aligned} \end{aligned}$$
(B.2)

Using the total differential, the last term in Eq. (B.2) yields

$$\begin{aligned} \begin{aligned} {\dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{F}}}= \left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{F}}\right| _{\lambda ^\mathrm {p},\varvec{{\mathfrak {n}}}=\text {const.}}+ \left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \lambda ^\mathrm {p}}\right| _{\varvec{{\mathfrak {n}}},\varvec{F}=\text {const.}}\otimes \dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}} \\ +\left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{{\mathfrak {n}}}}\right| _{\varvec{F},\lambda ^\mathrm {p}=\text {const.}}: \dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}} \end{aligned} \end{aligned}$$
(B.3)

with

$$\begin{aligned}&\left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{F}}\right| _{\lambda ^\mathrm {p},\varvec{{\mathfrak {n}}}=\text {const.}}= \exp \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) \ \overline{\otimes }\ \varvec{F}^{\mathrm {p}-\mathrm {T}}_{n} , \end{aligned}$$
(B.4)
$$\begin{aligned}&\left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \lambda ^\mathrm {p}}\right| _{\varvec{{\mathfrak {n}}},\varvec{F}=\text {const.}}= \left\{ \text {D}\exp \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) : \left( -{\varDelta }t_{n+1}\varvec{{\mathfrak {n}}}\right) \right\} \cdot \varvec{F}^{\mathrm {e,tr}} , \end{aligned}$$
(B.5)
$$\begin{aligned}&\left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{{\mathfrak {n}}}}\right| _{\varvec{F},\lambda ^\mathrm {p}=\text {const.}}= \underbrace{ \left\{ \text {D}\exp \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) : \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\underline{\varvec{1}}_{sym.}\right) \right\} }_{iakl} * \underbrace{\varvec{F}^{\mathrm {e,tr}}}_{aj}. \end{aligned}$$
(B.6)

Then, \(\dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}}\) and \(\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}}\) are obtained from the total differential of two local residuals

$$\begin{aligned}&\text {d}_{\varvec{F}}{\mathsf {r}}^{\lambda ^\mathrm {p}}= \text {d}_{\varvec{F}}\left[ -||{\varvec{\tau }_0}_{\mathrm {dev},n+1}||+\sqrt{\dfrac{2}{3}}r^\mathrm {p}_{0,n+1}+\dfrac{2{\eta }_{\mathrm {p}}}{3g\left( d\right) }\lambda ^\mathrm {p}_{n+1}\right] =0 \nonumber \\&\quad \rightarrow \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \varvec{F}}+ \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}}+ \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}} \nonumber \\&\quad =-\dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev}}||}{\partial \varvec{F}} -{\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}} -{\mathsf {k}}_{\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}} =\varvec{0} \end{aligned}$$
(B.7)

and

$$\begin{aligned} \begin{aligned}&\text {d}_{\varvec{F}}{\mathsf {r}}^{\varvec{{\mathfrak {n}}}}= \text {d}_{\varvec{F}}\left[ -\dfrac{{\varvec{\tau }_0}_{\mathrm {dev},n+1}}{||{\varvec{\tau }_0}_{\mathrm {dev},n+1}||}+\varvec{{\mathfrak {n}}}\right] =0\\&\quad \rightarrow \dfrac{\partial {\mathsf {r}}^{\varvec{{\mathfrak {n}}}}}{\partial \varvec{F}}+ \dfrac{\partial {\mathsf {r}}^{\varvec{{\mathfrak {n}}}}}{\partial \lambda ^\mathrm {p}}\otimes \dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}}+ \dfrac{\partial {\mathsf {r}}^{\varvec{{\mathfrak {n}}}}}{\partial \varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}}\\&\qquad =-\dfrac{\partial }{\partial \varvec{F}}\dfrac{{\varvec{\tau }_0}_{\mathrm {dev}}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||} -{\mathsf {k}}_{\varvec{{\mathfrak {n}}}\lambda ^\mathrm {p}}\otimes \dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}} -{\mathsf {k}}_{\varvec{{\mathfrak {n}}}\varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \varvec{F}} =\underline{\varvec{0}} . \end{aligned} \end{aligned}$$
(B.8)

Taking into account the symmetry of flow tensor, an equation in Vogit notation for Eqs. (B.7) and (B.8) is obtained

$$\begin{aligned}&\underbrace{\left[ \begin{array}{ccccccc} {\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{11}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{22}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{33}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{23}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{13}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{12}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{12}} \end{array} \right] }_{\varvec{{\mathsf {k}}}}&\quad \left[ \begin{array}{c} \dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{11}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{22}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{33}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{23}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{13}}{\partial \varvec{F}}\\ \dfrac{\partial {\mathfrak {n}}_{12}}{\partial \varvec{F}} \end{array} \right] \nonumber \\&= -\left[ \begin{array}{c} \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev}}||}{\partial \varvec{F}}\\ \dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},11}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\\ \dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},22}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\\ \dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},33}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\\ 2\dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},23}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\\ 2\dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},13}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\\ 2\dfrac{\partial }{\partial \varvec{F}}\dfrac{{{\tau }_0}_{\mathrm {dev},12}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||} \end{array} \right] \end{aligned}$$
(B.9)

with

$$\begin{aligned} \begin{aligned} \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev}}||}{\partial \varvec{F}_{n+1}}&= \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev}}||}{\partial \varvec{F}^{e}_{n+1}}: \exp \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) \ \overline{\otimes }\ \varvec{F}^{\mathrm {p}-\mathrm {T}}_{n} ,\\ \dfrac{\partial }{\partial \varvec{F}_{n+1}}\dfrac{{\varvec{\tau }_0}_{\mathrm {dev}}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}&= \left( \dfrac{1}{||{\varvec{\tau }_0}_{\mathrm {dev}}||}\dfrac{\partial {\varvec{\tau }_0}_{\mathrm {dev}}}{\partial \varvec{F}^\mathrm {e}_{n+1}}- \dfrac{{\varvec{\tau }_0}_{\mathrm {dev}}}{||{\varvec{\tau }_0}_{\mathrm {dev}}||^2}\otimes \dfrac{\partial ||{\varvec{\tau }_0}_{\mathrm {dev}}||}{\partial \varvec{F}^\mathrm {e}_{n+1}}\right) \\&\quad :\exp \left( -{\varDelta }t_{n+1}\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}\right) \ \overline{\otimes }\ \varvec{F}^{\mathrm {p}-\mathrm {T}}_{n} . \end{aligned} \end{aligned}$$
(B.10)

In a same manner, \({\dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \alpha }}\) yields

$$\begin{aligned} {\dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \alpha }}= \left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \lambda ^\mathrm {p}}\right| _{\varvec{{\mathfrak {n}}}=\text {const.}} \dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha }+ \left. \dfrac{\partial \varvec{F}^\mathrm {e}}{\partial \varvec{{\mathfrak {n}}}}\right| _{\lambda ^\mathrm {p}=\text {const.}}: \dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \alpha } \end{aligned}$$
(B.11)

with

$$\begin{aligned} \begin{aligned}&\text {d}_{\alpha }{\mathsf {r}}^{\lambda ^\mathrm {p}}= \text {d}_{\alpha }\left[ -||{\varvec{\tau }_0}_{\mathrm {dev},n+1}||+\sqrt{\dfrac{2}{3}}r^\mathrm {p}_{0,n+1}+\dfrac{2{\eta }_{\mathrm {p}}}{3g\left( d\right) }\lambda ^\mathrm {p}_{n+1}\right] =0 \\&\qquad \rightarrow \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \alpha }+ \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha }+ \dfrac{\partial {\mathsf {r}}^{\lambda ^\mathrm {p}}}{\partial \varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \alpha }\\&\quad =\sqrt{\dfrac{2}{3}}\dfrac{\partial r^\mathrm {p}_{0}}{\partial \alpha } -{\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha } -{\mathsf {k}}_{\lambda ^\mathrm {p}\varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \alpha } =0 \end{aligned} \end{aligned}$$
(B.12)

and

$$\begin{aligned} \begin{aligned}&\text {d}_{\alpha }{\mathsf {r}}^{\varvec{{\mathfrak {n}}}}= \text {d}_{\alpha }\left[ -\dfrac{{\varvec{\tau }_0}_{\mathrm {dev},n+1}}{||{\varvec{\tau }_0}_{\mathrm {dev},n+1}||}+\varvec{{\mathfrak {n}}}\right] =0\\&\quad \rightarrow \dfrac{\partial {\mathsf {r}}^{\varvec{{\mathfrak {n}}}}}{\partial \lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha }+ \dfrac{\partial {\mathsf {r}}^{\varvec{{\mathfrak {n}}}}}{\partial \varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \alpha } =-{\mathsf {k}}_{\varvec{{\mathfrak {n}}}\lambda ^\mathrm {p}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha } -{\mathsf {k}}_{\varvec{{\mathfrak {n}}}\varvec{{\mathfrak {n}}}}:\dfrac{\partial \varvec{{\mathfrak {n}}}}{\partial \alpha } =\varvec{0} , \end{aligned} \end{aligned}$$
(B.13)

Taking into account of the symmetry of flow tensor, an equation in Vogit notation for Eqs. (B.12) and (B.13) is obtained

$$\begin{aligned} \begin{aligned}&\underbrace{\left[ \begin{array}{ccccccc} {\mathsf {k}}_{\lambda ^\mathrm {p}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{\lambda ^\mathrm {p}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{11}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{11}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{22}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{22}{\mathfrak {n}}_{12}} \\ {\mathsf {k}}_{{\mathfrak {n}}_{33}\lambda ^\mathrm {p}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{11}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{22}} &{}{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{33}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{23}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{13}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{33}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{23}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{23}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{13}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{13}{\mathfrak {n}}_{12}} \\ 2{\mathsf {k}}_{{\mathfrak {n}}_{12}\lambda ^\mathrm {p}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{11}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{22}} &{}2{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{33}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{23}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{13}} &{}4{\mathsf {k}}_{{\mathfrak {n}}_{12}{\mathfrak {n}}_{12}} \end{array} \right] }_{\varvec{{\mathsf {k}}}}&\quad \left[ \begin{array}{c} \dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{11}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{22}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{33}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{23}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{13}}{\partial \alpha }\\ \dfrac{\partial {\mathfrak {n}}_{12}}{\partial \alpha } \end{array} \right] \\&\quad = \left[ \begin{array}{c} \sqrt{\dfrac{2}{3}}\dfrac{\partial r^\mathrm {p}_{0}}{\partial \alpha }\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} \right] \end{aligned} \end{aligned}$$
(B.14)

with

$$\begin{aligned} \begin{aligned} \dfrac{\partial r^\mathrm {p}_{0}}{\partial \alpha }&= \dfrac{\partial }{\partial \alpha }\left\{ {\hat{y}}\left( {\bar{\alpha }}\right) +p_\mathrm {p}\left( {\bar{\alpha }}-\alpha \right) \right\} =-p_\mathrm {p}. \end{aligned} \end{aligned}$$
(B.15)

In addition, \(\dfrac{\partial {\bar{\alpha }}}{\partial \alpha }\) and \(\dfrac{\partial {\bar{\alpha }}}{\partial \varvec{F}}\) are obtained as

$$\begin{aligned} \begin{aligned} \dfrac{\partial {\bar{\alpha }}}{\partial \alpha }= \dfrac{\partial }{\partial \alpha }\left( {\bar{\alpha }}_n+\sqrt{\dfrac{2}{3}}\lambda ^\mathrm {p}{\varDelta }t_{n+1}\right) = \sqrt{\dfrac{2}{3}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \alpha }{\varDelta }t_{n+1} \end{aligned} \end{aligned}$$
(B.16)

and

$$\begin{aligned} \begin{aligned} \dfrac{\partial {\bar{\alpha }}}{\partial \varvec{F}}= \dfrac{\partial }{\partial \varvec{F}}\left( {\bar{\alpha }}_n+\sqrt{\dfrac{2}{3}}\lambda ^\mathrm {p}{\varDelta }t_{n+1}\right) = \sqrt{\dfrac{2}{3}}\dfrac{\partial \lambda ^\mathrm {p}}{\partial \varvec{F}}{\varDelta }t_{n+1} \end{aligned} . \end{aligned}$$
(B.17)

C An issue about crack phase-field modeling

Generally, once the material experiences plastic deformation, it does not show elastic behavior again except unloadings. Nevertheless, due to the setup of damage modeling incorporated into the elastoplastic constitutive model such as [42, 50, 51], the material shows elastic behavior again when the damage accumulates significantly. We explain this elastic-plastic-elastic transition using the same setup as in Sect. 2. We assume the material is under the plastic state and damaged by external loadings. Then, the damage variable without the plastic driving force at the end of the loading step n yields

$$\begin{aligned} \begin{aligned}&d_n=\dfrac{\hat{{\varPsi }}^{\mathrm {e}}_n}{G_\mathrm {c}/2l_\mathrm {f}+\hat{{\varPsi }}^{\mathrm {e}}_n}\\&\quad \text {with}\quad \hat{{\varPsi }}^{\mathrm {e}}_n=\dfrac{1}{2}E {\varepsilon ^\mathrm {e}_n}^2 ,\quad \varepsilon ^\mathrm {e}_n =\varepsilon _n - \varepsilon ^\mathrm {p}_n \quad \text {and}\quad \varepsilon _n =\dfrac{u_n}{L+u_n} , \end{aligned} \end{aligned}$$
(C.1)

where L and \(u_n\) denote the structure’s length and the total displacement by the loading step n. When the next loading is introduced at the loading step \(n+1\), we start from checking the deformation state by using the yield function \({\hat{\varPhi }}^\mathrm {p}_{n+1,k=1}\) at the first global Newton-Raphson iteration \(k=1\). By using the variables obtained in the previous loading step n, the yield function is written as

$$\begin{aligned} \begin{aligned}&{\hat{\varPhi }}^\mathrm {p}_{n+1,k=1}=\left( 1-d_n\right) ^2\sigma _{n+1,k=1} - \left( \sigma _0 + h \varepsilon ^\mathrm {p}_n\right) \\&\quad \text {with}\quad \sigma _{n+1,k=1}=E\left( \varepsilon _{n+1} - \varepsilon ^\mathrm {p}_n\right) \quad \text {and}\quad \varepsilon _{n+1}\\&\quad =\dfrac{u_n+\varDelta u_{n+1}}{L+u_n+\varDelta u_{n+1}}, \end{aligned} \end{aligned}$$
(C.2)

where \(\varDelta u_{n+1}\) is the new displacement increment. Here, Eq. (C.2) may be lower than zero due to the updated damage variable \(d_n\), which represents that the material shows elastic behavior despite new loading. By conducting some algebra, we obtain the explicit displacement increment

$$\begin{aligned} \begin{aligned} \varDelta u_{n+1}\ge \dfrac{C_{n+1}\left( L+u_n\right) -u_n}{C_{n+1}-1} \quad \text {with}\quad C_{n+1}=\dfrac{\left( \sigma _0 + h \varepsilon ^\mathrm {p}_n\right) }{\left( 1-d_n\right) ^2 E}+ \varepsilon ^\mathrm {p}_n \end{aligned} , \end{aligned}$$
(C.3)

which leads the material into the elastic state again. Thus, we may infer that this setup is not absolutely appropriate to explain ductile fracture in elastoplastic materials. On the other hand, we also realize that this unrealistic transition of deformation state contributes to computational stability. As widely known, the violent plastic deformation due to the severely damaged mesh’s softening usually causes unstable tendencies, especially in the local return mapping process. This problem may be avoided by the unreal state transition since the severely damaged mesh does not show the plastic behavior.

However, the proposed model introduces the plastic deformation, which results in the inevitable of the violent plastic deformation in the severely damaged region. Therefore, we set a threshold around \(d\approx 0.9\sim 0.95\) to terminate the plastic deformation to maintain computational stability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Matsubara, S., Moriguchi, S. et al. Crack phase-field model equipped with plastic driving force and degrading fracture toughness for ductile fracture simulation. Comput Mech 69, 151–175 (2022). https://doi.org/10.1007/s00466-021-02087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02087-1

Keywords

Navigation