Skip to main content

Phase-Field Formulation for Ductile Fracture

  • Chapter
  • First Online:
Advances in Computational Plasticity

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 46))

Abstract

Phase-field models have been a topic of much research in recent years. Results have shown that these models are able to produce complex crack patterns in both two and three dimensions. A number of extensions from brittle to ductile materials have been proposed and results are promising. To date, however, these extensions have not accurately represented strains after crack initiation or included important aspects of ductile fracture such as stress triaxiality. This work describes a number of contributions to further develop phase-field models for fracture in ductile materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ambati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ambati, R. Kruse, L. De Lorenzis, A phase-field model for ductile fracture at finite strains and its experimental verification. Comput. Mech. 57(1), 149–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ambrosio, V.M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Amor, J.J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  MATH  Google Scholar 

  5. Y.-L. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008)

    Article  MATH  Google Scholar 

  6. Y.-L. Bai, T. Wierzbicki, Application of extended mohr-coulomb criterion to ductile fracture. Int. J. Fract. 161, 1–20 (2010)

    Article  MATH  Google Scholar 

  7. Y.-B. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81–98 (2004)

    Article  Google Scholar 

  8. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V. Verhoosel, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bourdin, C. Larsen, C. Richardson, A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract. 168(2), 133–143 (2011)

    Article  MATH  Google Scholar 

  13. B. Bourdin, C.P. Chukwudozie, K. Yoshioka, A variational approach to the numerical simulation of hydraulic fracturing, in Proceedings of the 2012 SPE Annual Technical Conference and Exhibition, volume SPE 159154 (Society of Petroleum Engineers, 2012)

    Google Scholar 

  14. P. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill Book Company, London, 1952)

    MATH  Google Scholar 

  15. S. Burke, C. Ortner, E. Süli, An adaptive finite element approximation of a generalized Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23(9), 1663–1697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. G.A. Francfort, J-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Google Scholar 

  17. A. Ghahremaninezhad, K. Ravi-Chandar, Ductile failure behavior of polycrystalline al 6061–t6. Int. J. Fract. 174(2), 177–202 (2012)

    Article  Google Scholar 

  18. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth—Part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  19. M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D: Nonlinear Phenom. 92(3–4), 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.S. Halton, S. Kyriakides, K. Ravi-Chandar, Ductile failure under combined shear and tension. Int. J. Solids Struct. 50, 1507–1522 (2013)

    Article  Google Scholar 

  21. M. Hofacker, C. Miehe, A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int. J. Numer. Methods Eng. 93(3), 276–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  23. C.J. Larsen, Models for dynamic fracture based on Griffith’s criterion, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, vol. 21, ed. by K. Hackl (Springer, Netherlands, 2010), pp. 131–140

    Google Scholar 

  24. C.J. Larsen, C. Ortner, E. Süli, Existence of solutions to a regularized model of dynamic fracture. Math. Methods Models Appl. Sci. 20(7), 1021–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. McAuliffe, H. Waisman, A unified model for metal failure capturing shear banding and fracture. Int. J. Plast. 65, 131–151 (2015)

    Article  Google Scholar 

  26. F.A. McClintock, A criterion for ductile fracture by the growth of holes. J. Appl. Mech. 35, 363–371 (1968)

    Article  Google Scholar 

  27. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010a)

    Google Scholar 

  28. C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Miehe, M. Hofacker, L.-M. Schänzel, F. Aldakheel, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput. Methods Appl. Mech. Eng. 294, 486–522 (2015a)

    Article  MathSciNet  Google Scholar 

  30. C. Miehe, L.-M. Schänzel, Phase field modeling of fracture in rubbery polymers. Part I. J. Mech. Phys. Solids 65, 93–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Miehe, L.-M. Schänzel, H. Ulmer, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015b)

    Article  MathSciNet  Google Scholar 

  32. C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains. a variational gradient-extended plasticity-damage theory. Int. J. Plast. (in press) (2016). doi:10.1016/j.ijplas.2016.04.011

  33. A. Mikeli\(\grave{{\rm c}}\), M.F. Wheeler, T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model. Simul. 13, 367–398 (2015)

    Google Scholar 

  34. D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1696)

    Google Scholar 

  36. D. Schillinger, L. Dedè, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.A. Scott, D.C. Thomas, E.J. Evans, Isogeometric spline forests. Comput. Methods Appl. Mech. Eng. 269(0), 222–264 (2014)

    Google Scholar 

  38. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1998)

    MATH  Google Scholar 

  39. H. Stumpf, K. Hackl, Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-brittle materials. Int. J. Solids Struct. 40(6), 1567–1584 (2003)

    Article  MATH  Google Scholar 

  40. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica 32, 157–169 (1984)

    Article  Google Scholar 

  41. K.G. Webster, Investigation of close proximity underwater explosition effects on a ship-like structure using the multi-material arbitrary Lagrangian Eulerian finite element method. Master’s thesis, Virginia Polytechnic Institute and State University, Jan 2007

    Google Scholar 

  42. Z.A. Wilson, M.J. Borden, C.M. Landis, A phase-field model for fracture in piezoelectric ceramics. Int. J. Fract. 183(2), 135–153 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants from the Office of Naval Research under contract number N00014-08-1-0992 and the Army Research Office under contract number W911NF-10-1-0216. T.J.R. Hughes, A. Anvari, and C.M. Landis were also supported by ARO grant number W911NF-13-1-0220. This support is gratefully acknowledged. The authors also acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC and visualization resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Borden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Borden, M.J., Hughes, T.J.R., Landis, C.M., Anvari, A., Lee, I.J. (2018). Phase-Field Formulation for Ductile Fracture. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics