Skip to main content

A numerical formulation for cavitating flows around marine propellers based on variational multiscale method

Abstract

A numerical approach for modelling cavitating flows over moving hydrodynamic surfaces is presented. The operating fluid is modelled as an isothermal homogeneous mixture of water vapor and liquid phases. The flow field is governed by the Navier–Stokes equations along with a transport equation for the vapor volume fraction. The Arbitrary Lagrangian-Eulerian description of the continuum is adopted to handle fluid flow simulations on moving domains. The residual based variational multiscale method is used to model the turbulent flow together with wall modelling implemented by the weak imposition of the no-slip boundary condition. Merkle and Zwart cavitation models are implemented and compared. First, a cavitating flow over a 3D hemispherical fore-body is modeled to perform a detailed comparison between two models. Next, the cavitating flow over the INSEAN E779A marine propeller is modeled and results are compared to available experimental data showing good agreement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Burrill LC (1951) Sir Charles Parsons and cavitation. The Institute of Marine Engineers, Transactions, vol LXIII, no 8

  2. 2.

    Kuiper G (1997) Cavitation research and ship propeller design. Appl Sci Res 58(1–4):33–50

    Google Scholar 

  3. 3.

    Krella AK, Zakrzewska DE (2018) Cavitation erosion-phenomenon and test rigs. Adv Mater Sci 18(2):15–26

    Google Scholar 

  4. 4.

    Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 123(792):440–465

    MATH  Google Scholar 

  5. 5.

    Schoenherr KE (1939) Propulsion and propellers. Princ Naval Archit 2:148–150

    Google Scholar 

  6. 6.

    Lerbs HW (1952) Moderately loaded propellers with a finite number of blades and a arbitrary distribution of circulations. Trans SNAME 60:73–123

    Google Scholar 

  7. 7.

    Eckhardt MK, Morgan WB (1955) A propeller design method. SNAME Trans 63:1955

    Google Scholar 

  8. 8.

    van Manen JD (1957) Fundamentals of ship resistance and propulsion. Int Shipbuild Progr 4(35):371–391

    Google Scholar 

  9. 9.

    Lerbs HW (1955) Propeller pitch correction arising from lifting surface effect. Technical report, David Taylor Model Basin Washington DC

  10. 10.

    Nelson DM (1964) A lifting-surface propeller design method for high-speed computers. Technical report, Naval Ordnance Test Station China Lake CA

  11. 11.

    Morgan WB, Silovic V, Denny SB (1968) Propeller lifting-surface corrections. Technical report, Hydro and Aerodynamics Lab Lyngby (Denmark) Hydrodynamics Section

  12. 12.

    Kuiper G (1981) Cavitation inception on ship propeller models. Ph.D. Thesis, Technische Hogeschool Delft

  13. 13.

    Tulin MP (1953) Steady two-dimensional cavity flows about slender bodies. David W. Taylor Model Basin, Washington DC, USA, Department of the Navy, Research and Development Report 834

  14. 14.

    Geurst JA, Verbrugh PJ (1959) A note on camber effects of a partially cavitated hydrofoil. Int Shipbuild Progr 6(61):409–414

    Google Scholar 

  15. 15.

    Geurst JA (1961) Linearized theory of two-dimensional cavity flows. Technical report, Technische Hogeschool Delft

  16. 16.

    Fabula AG (1962) Thin-airfoil theory applied to hydrofoils with a single finite cavity and arbitrary free-streamline detachment. J Fluid Mech 12(2):227–240

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Tulin MP (1963) Supercavitating flows-small perturbation theory. Technical report, Hydronautics Inc Laurel MD

  18. 18.

    Wade RB (1967) Linearized theory of a partially cavitating plano-convex hydrofoil including the effects of camber and thickness. J Ship Res 11(1):20–27

    Google Scholar 

  19. 19.

    Kinnas SA (1985) Non-linear corrections to the linear theory for the prediction of the cavitating flow around hydrofoils. Ph.D Thesis, Massachusetts Institute of Technology

  20. 20.

    Kinnas SA et al (1991) Leading-edge corrections to the linear theory of partially cavitating hydrofoils. J Ship Res 35(01):15–27

    Google Scholar 

  21. 21.

    Tulin MP, Chun CH (1980) New application of cavity flow theory. In: 13th Symposium on naval hydrodynamics, Tokyo, pp 107–132

  22. 22.

    Widnall SE et al (1966) Unsteady loads on supercavitating hydrofoils of finite span. J Ship Res 10(02):107–118

    Google Scholar 

  23. 23.

    Lee C-S (1979) Predicton of steady and unsteady performance of marine propellers with or without cavitation by numerical lifting-surface theory. Ph.D. Thesis, Massachusetts Institute of Technology

  24. 24.

    Lee C-S (1980) Prediction of the transient cavitation on marine propellers by numerical lifting-surface theory. In: Proceedings of 13th symposium on naval hydrodynamics, pp 41–64

  25. 25.

    Breslin JP, Kerwin JE (1983) Theoretical and experimental propeller-induced hull pressures arising from intermittent blade cavitation loading and thickness. Technical report, Maritime Technical Information Facility

  26. 26.

    Kerwin JE (1986) Marine propellers. Annu Rev Fluid Mech 18(1):367–403

    Google Scholar 

  27. 27.

    Kerwin JE (1961) The solution of propeller lifting surface problems by vortex lattice methods. Technical report, Massachusetts Institute of Technology Cambridge Dept of Naval Architecture and Marine Engineering

  28. 28.

    Kerwin JE, Lee C-S (1978) Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Technical report, Society of Naval Architects and Marine Engineers

  29. 29.

    Szantyr JA (1985) A new method for the analysis of unsteady propeller cavitation and hull surface pressures. R Inst Naval Arch Trans 127

  30. 30.

    Kinnas SA, Fine NE (1989) Theoretical prediction of midchord and face unsteady propeller sheet cavitation. In: International conference on numerical ship hydrodynamics, 5th, pp 685–700

  31. 31.

    Kinnas SA et al (1992) A general theory for the coupling between thickness and loading for wings and propellers. J Ship Res 36(01):59–68

    Google Scholar 

  32. 32.

    Kinnas SA, Lee H, Young YL (2003) Modeling of unsteady sheet cavitation on marine propeller blades. Int J Rotat Mach 9(4):263–277

    Google Scholar 

  33. 33.

    Hess JL, Valarezo WO (1985) Calculation of steady flow about propellers using a surface panel method. J Propul Power 1(6):470–476

    Google Scholar 

  34. 34.

    Lee J (1987) A potential based panel method for the analysis of marine propellers in steady flow. Ph.D. Thesis, Massachusetts Institute of Technology

  35. 35.

    Fine NE (1992) Nonlinear analysis of cavitating propellers in nonuniform flow. Ph.D. Thesis, Massachusetts institute of Technology

  36. 36.

    Kinnas SA, Fine NE (1992) A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 717–737

  37. 37.

    Lee H, Kinnas SA, Gu H, Natarajan S (2003). Numerical modeling of rudder sheet cavitation including propeller/rudder interaction and the effects of a tunnel. In: Fifth international symposium on cavitation (CAV 2003) proceedings, pp CAV03–GS–12–005

  38. 38.

    Young YL, Kinnas SA (2001) A BEM for the prediction of unsteady midchord face and/or back propeller cavitation. J Fluids Eng 123(2):311–319

    Google Scholar 

  39. 39.

    Lee H, Kinnas SA (2004) Application of a boundary element method in the prediction of unsteady blade sheet and developed tip vortex cavitation on marine propellers. J Ship Res 48(1):15–30

    Google Scholar 

  40. 40.

    Lee H, Kinnas SA (2005) Unsteady wake alignment for propellers in nonaxisymmetric flows. J Ship Res 49(3):176–190

    Google Scholar 

  41. 41.

    Salvatore F, Greco L, Calcagni D (2011). Computational analysis of marine propeller performance and cavitation by using an inviscid-flow BEM model. In: Second international symposium on marine propulsors (SMP2011), Hamburg, Germany, pp 72–79

  42. 42.

    Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer J, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (SMP15), Austin, TX, USA, pp 330–345

  43. 43.

    Perali P, Lloyd T, Vaz G (2016). Comparison of uRANS and BEM-BEM for propeller pressure pulse prediction: E779A propeller in a cavitation tunnel. In: Proceedings of the 19th numerical towing tank symposium, pp 90–95

  44. 44.

    Vaz G, de Campos J, Bosschers J, de Eça L (2005)Instituto Superior de Ciências do Trabalho e da Empresa. Modelling of sheet cavitation on hydrofoils and marine propellers using boundary element methods

  45. 45.

    Carlton J (2018) Marine propellers and propulsion. Butterworth-Heinemann

  46. 46.

    Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96

    Google Scholar 

  47. 47.

    Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998, pp 307–313

  48. 48.

    Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875

    MATH  Google Scholar 

  49. 49.

    Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, vol 1. ICMF New Orleans

  50. 50.

    Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624

    Google Scholar 

  51. 51.

    Zwart PJ, Gerber AG, Belamri T , et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, vol 152

  52. 52.

    Abdel-Maksoud M, SVA P M B (2003). Numerical and experimental study of cavitation behaviour of a propeller. Jahrbuch der Schiffbautechnischen Gesellschaft, pp 35–43

  53. 53.

    Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  54. 54.

    Salvatore F, Streckwall H, Van Terwisga T (2009) Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In: Proceedings of the first international symposium on marine propulsors, Trondheim, Norway, pp 22–24. Citeseer

  55. 55.

    Salvatore F, Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. Technical report, INSEAN Tech. rep. 2006-085

  56. 56.

    Heinke HJ, Lubke L (2011) The SMP 2011 workshop on cavitation and propeller performance-case 2, propeller open water performance and cavitation behaviour. In: Proceedings of first workshop on cavitation and propeller performance, the second international symposium on marine propulsors, SMP, pp 36–42

  57. 57.

    Gaggero S, Villa D (2017) Steady cavitating propeller performance by using OpenFOAM, StarCCM+ and a boundary element method. Proc Inst Mech Eng Part M J Eng Maritime Environ 231(2):411–440

    Google Scholar 

  58. 58.

    Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, vol 26, pp 203–208

  59. 59.

    Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45

    Google Scholar 

  60. 60.

    Bensow RE, Bark G (2010) Implicit LES predictions of the cavitating flow on a propeller. J Fluids Eng 132(4)

  61. 61.

    Lu N-X, Bensow RE, Bark G (2014) Large eddy simulation of cavitation development on highly skewed propellers. J Mar Sci Technol 19(2):197–214

    Google Scholar 

  62. 62.

    Kurobe Y (1983) Measurement of cavity volume and pressure fluctuations on a model of the training ship “Seiun-Maru” with reference to full scale measurement. Rep Ship Res Inst 20(6)

  63. 63.

    Yu C, Wang Y, Huang C, Wu X, Du T (2017) Large eddy simulation of unsteady cavitating flow around a highly skewed propeller in nonuniform wake. J Fluids Eng 139(4)

  64. 64.

    Asnaghi A, Svennberg U, Bensow RE (2018) Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Appl Ocean Res 79:197–214

    Google Scholar 

  65. 65.

    Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150

    Google Scholar 

  66. 66.

    Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59

    MATH  Google Scholar 

  67. 67.

    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    MathSciNet  MATH  Google Scholar 

  68. 68.

    Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. Ph.D. Thesis, Stanford University Stanford, CA

  69. 69.

    Motlagh YG, Ahn HT, Hughes TJR, Calo VM (2013) Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method. Comput Fluids 71:146–155

    MathSciNet  MATH  Google Scholar 

  70. 70.

    Bazilevs Y, Yan J, De Stadler M, Sarkar S (2014a) Computation of the flow over a sphere at Re= 3700: A comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12)

  71. 71.

    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152

    MathSciNet  MATH  Google Scholar 

  72. 72.

    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79

  73. 73.

    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Google Scholar 

  74. 74.

    Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090. https://doi.org/10.1007/s00466-014-1090-5

    Article  MATH  Google Scholar 

  75. 75.

    Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016a) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211. https://doi.org/10.1016/j.compfluid.2015.07.013

    MathSciNet  Article  MATH  Google Scholar 

  76. 76.

    Yan J, Korobenko A, Deng X, Bazilevs Y (2016b) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174. https://doi.org/10.1016/j.compfluid.2016.03.008

    MathSciNet  Article  MATH  Google Scholar 

  77. 77.

    Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166. https://doi.org/10.1016/j.compfluid.2016.06.016

    MathSciNet  Article  MATH  Google Scholar 

  78. 78.

    Zhu Q, Yan J (2019) A moving-domain CFD solver in fenics with applications to tidal turbine simulations in turbulent flows. Comput Math Appl. https://doi.org/10.1016/j.camwa.2019.07.034

    Article  MATH  Google Scholar 

  79. 79.

    Bayram AM, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids. https://doi.org/10.1016/j.compfluid.2020.104432

    MathSciNet  Article  MATH  Google Scholar 

  80. 80.

    Bayram AM, Korobenko A (2020) Variational multiscale framework for cavitating flows. Comput Mech 66:49–67. https://doi.org/10.1007/s00466-020-01840-2

    MathSciNet  Article  MATH  Google Scholar 

  81. 81.

    Zhu Q, Xu F, Xu S, Hsu M-C, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.112748

    MathSciNet  Article  MATH  Google Scholar 

  82. 82.

    Bazilevs Y, Ming-Chen Hsu I, Akkerman S, Wright K, Takizawa B, Henicke T. Spielman, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. https://doi.org/10.1002/fld.2400

    Article  MATH  Google Scholar 

  83. 83.

    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011a) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. https://doi.org/10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  84. 84.

    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011b) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. https://doi.org/10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  85. 85.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, February ISBN 978-0470978771. https://doi.org/10.1002/9781118483565

  86. 86.

    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014a) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. https://doi.org/10.1007/s00466-013-0888-x

    Article  MATH  Google Scholar 

  87. 87.

    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014b) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508. https://doi.org/10.1007/s11831-014-9113-0

    MathSciNet  Article  MATH  Google Scholar 

  88. 88.

    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211. https://doi.org/10.1007/s00466-014-0999-z

    MathSciNet  Article  Google Scholar 

  89. 89.

    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu Ming-Chen, Kostov N, McIntyre S (2014b) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398. https://doi.org/10.1007/s11831-014-9119-7

    MathSciNet  Article  MATH  Google Scholar 

  90. 90.

    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015a) Space–time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406. https://doi.org/10.1142/S0218202515400126

    MathSciNet  Article  MATH  Google Scholar 

  91. 91.

    Korobenko A, Bazilevs Takizawa K, Tezduyar TE (2019) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26(1099):1059. https://doi.org/10.1007/s11831-018-9292-1

    MathSciNet  Article  Google Scholar 

  92. 92.

    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH (2020a) Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization. J Adv Eng Comput 4:1–32. https://doi.org/10.25073/jaec.202041.278

    Article  MATH  Google Scholar 

  93. 93.

    Bazilevs Y, Takizawa K, Tezduyar TE, Ming-Chen Hsu, Otoguro Y, Mochizuki H, Wu MCH (2020) bALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 195–233. https://doi.org/10.1007/978-3-030-43736-7_7

    Chapter  MATH  Google Scholar 

  94. 94.

    Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2019a) Space–time variational multiscale isogeometric analysis of a tsunami-shelter vertical axis wind turbine. in preparation

  95. 95.

    Ravensbergen M, Bayram AM, Korobenko A (2020a) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids. https://doi.org/10.1016/j.compfluid.2020.104465

    MathSciNet  Article  MATH  Google Scholar 

  96. 96.

    Ravensbergen M, Helgedagsrud TA, Bazilevs Y, Korobenko A (2020b) A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.113182

    MathSciNet  Article  MATH  Google Scholar 

  97. 97.

    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015a) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375. https://doi.org/10.1142/S0218202515400114

    MathSciNet  Article  MATH  Google Scholar 

  98. 98.

    Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175. https://doi.org/10.1016/j.compfluid.2017.05.010

    MathSciNet  Article  MATH  Google Scholar 

  99. 99.

    Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020a) Computational flow analysis in aerospace, energy and transportation technologies with the variational multiscale methods. J Adv Eng Comput 4:83–117. https://doi.org/10.25073/jaec.202042.279

    Article  MATH  Google Scholar 

  100. 100.

    Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020b) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 235–280. https://doi.org/10.1007/978-3-030-43736-7_8

    Chapter  MATH  Google Scholar 

  101. 101.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83 (6)

  102. 102.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013a) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech. https://doi.org/10.1115/1.4024415

    Article  MATH  Google Scholar 

  103. 103.

    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014c) FSI modeling of vertical-axis wind turbines. J Appl Mech 10(1115/1):4027466

    Google Scholar 

  104. 104.

    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    MATH  Google Scholar 

  105. 105.

    Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100

    MathSciNet  MATH  Google Scholar 

  106. 106.

    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  MATH  Google Scholar 

  107. 107.

    Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481

    Google Scholar 

  108. 108.

    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MathSciNet  MATH  Google Scholar 

  109. 109.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2015b) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783. https://doi.org/10.1002/nme.4738

    Article  MATH  Google Scholar 

  110. 110.

    Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty-2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. https://doi.org/10.1007/978-3-319-96469-0_7

    Chapter  Google Scholar 

  111. 111.

    Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2020) Anatomically realistic lumen motion representation in patient-specific space–time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404. https://doi.org/10.1007/s00466-019-01774-4

    MathSciNet  Article  Google Scholar 

  112. 112.

    Terahara T, Takizawa K, Tezduyar TE, Tsushima A, Shiozaki K (2020a) Ventricle-valve-aorta flow analysis with the space–time isogeometric discretization and topology change. Comput Mech 65:1343–1363. https://doi.org/10.1007/s00466-020-01822-4

    MathSciNet  Article  MATH  Google Scholar 

  113. 113.

    Takizawa K, Terahara T, Tezduyar TE (2020c) Space–time flow computation with contact between the moving solid surfaces. To appear in a special volume to be published by Springer

  114. 114.

    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics. Springer, Berlin, pp 77–99. https://doi.org/10.1007/978-3-319-59548-1_6

    Chapter  Google Scholar 

  115. 115.

    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017a) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188. https://doi.org/10.1016/j.compfluid.2016.11.012

    MathSciNet  Article  MATH  Google Scholar 

  116. 116.

    Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 29–89. https://doi.org/10.1007/978-3-319-96469-0_2

    Chapter  Google Scholar 

  117. 117.

    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019a) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405. https://doi.org/10.25073/jaec.201932.245

    Article  Google Scholar 

  118. 118.

    Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, Modeling and simulation in science, engineering and technology. Springer, Berlin

    Google Scholar 

  119. 119.

    Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-C (2020b) Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method. Comput Mech 65:1167–1187. https://doi.org/10.1007/s00466-019-01813-0

    MathSciNet  Article  MATH  Google Scholar 

  120. 120.

    Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045. https://doi.org/10.1007/s00466-014-1017-1

    Article  MATH  Google Scholar 

  121. 121.

    Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 379–386. https://doi.org/10.1007/978-3-319-40827-9_29

    Chapter  MATH  Google Scholar 

  122. 122.

    Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019b) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798. https://doi.org/10.1016/j.compfluid.2018.05.025

    MathSciNet  Article  MATH  Google Scholar 

  123. 123.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012a) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. https://doi.org/10.1007/s00466-012-0760-4

    MathSciNet  Article  MATH  Google Scholar 

  124. 124.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013a) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. https://doi.org/10.1007/s00466-012-0790-y

    MathSciNet  Article  MATH  Google Scholar 

  125. 125.

    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014c) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486. https://doi.org/10.1142/S0218202514500250

    MathSciNet  Article  MATH  Google Scholar 

  126. 126.

    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014b) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071. https://doi.org/10.1007/s00466-014-1059-4

    MathSciNet  Article  MATH  Google Scholar 

  127. 127.

    Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://doi.org/10.1007/s00466-015-1166-x

    Article  MATH  Google Scholar 

  128. 128.

    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    MathSciNet  MATH  Google Scholar 

  129. 129.

    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    MathSciNet  MATH  Google Scholar 

  130. 130.

    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    MathSciNet  MATH  Google Scholar 

  131. 131.

    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    MathSciNet  MATH  Google Scholar 

  132. 132.

    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    MathSciNet  MATH  Google Scholar 

  133. 133.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010a) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    MathSciNet  MATH  Google Scholar 

  134. 134.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010b) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Google Scholar 

  135. 135.

    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599

    MathSciNet  Google Scholar 

  136. 136.

    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012b) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 10(1115/1):4005073

    MATH  Google Scholar 

  137. 137.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012c) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. https://doi.org/10.1007/s00466-012-0759-x

    Article  MATH  Google Scholar 

  138. 138.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013b) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134. https://doi.org/10.1016/j.compfluid.2012.11.008

    MathSciNet  Article  MATH  Google Scholar 

  139. 139.

    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012d) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. https://doi.org/10.1007/s00466-012-0758-y

    Article  MATH  Google Scholar 

  140. 140.

    Takizawa K, Tezduyar TE, Kostov N (2014d) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233. https://doi.org/10.1007/s00466-014-0980-x

    MathSciNet  Article  Google Scholar 

  141. 141.

    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014e) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971. https://doi.org/10.1007/s00466-013-0935-7

    MathSciNet  Article  MATH  Google Scholar 

  142. 142.

    Takizawa K, Tezduyar TE, Buscher A (2015b) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141. https://doi.org/10.1007/s00466-014-1095-0

    Article  Google Scholar 

  143. 143.

    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013c) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. https://doi.org/10.1142/S0218202513400058

    MathSciNet  Article  MATH  Google Scholar 

  144. 144.

    Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013d) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248. https://doi.org/10.1142/s0218202513400022

    MathSciNet  Article  MATH  Google Scholar 

  145. 145.

    Takizawa K, Tezduyar TE, Hattori H (2017b) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117. https://doi.org/10.1016/j.compfluid.2016.02.019

    MathSciNet  Article  MATH  Google Scholar 

  146. 146.

    Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/240/6/062014

    Article  MATH  Google Scholar 

  147. 147.

    Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019a) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870. https://doi.org/10.1142/S021820251941001X

    MathSciNet  Article  MATH  Google Scholar 

  148. 148.

    Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017c) Turbocharger flow computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20. https://doi.org/10.1016/j.compfluid.2016.02.021

    MathSciNet  Article  MATH  Google Scholar 

  149. 149.

    Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200. https://doi.org/10.1016/j.compfluid.2017.04.017

    MathSciNet  Article  MATH  Google Scholar 

  150. 150.

    Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 399–434. https://doi.org/10.1007/978-3-319-96469-0_10

    Chapter  Google Scholar 

  151. 151.

    Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019b) Turbocharger turbine and exhaust manifold flow computation with the space–time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776. https://doi.org/10.1016/j.compfluid.2018.05.019

    MathSciNet  Article  MATH  Google Scholar 

  152. 152.

    Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019c) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419. https://doi.org/10.1007/s00466-019-01722-2

    MathSciNet  Article  MATH  Google Scholar 

  153. 153.

    Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlib, pp 159–178. https://doi.org/10.1007/978-3-319-40827-9_13

    Chapter  Google Scholar 

  154. 154.

    Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134. https://doi.org/10.1016/j.compfluid.2016.05.006

    MathSciNet  Article  MATH  Google Scholar 

  155. 155.

    Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 337–376. https://doi.org/10.1007/978-3-319-96469-0_8

    Chapter  Google Scholar 

  156. 156.

    Kuraishi T, Takizawa K, Tezduyar TE (2019a) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185. https://doi.org/10.1007/s00466-018-1642-1

    MathSciNet  Article  MATH  Google Scholar 

  157. 157.

    Kuraishi T, Takizawa K, Tezduyar TE (2019b) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718. https://doi.org/10.1007/s00466-019-01746-8

    Article  MATH  Google Scholar 

  158. 158.

    Tezduyar TE, Takizawa K, Kuraishi T (2020). Space–time computational FSI and flow analysis: 2004 and beyond. To appear in a special volume to be published by Springer

  159. 159.

    Takizawa K, Tezduyar TE, Kanai T (2017d) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806. https://doi.org/10.1142/S0218202517500166

    MathSciNet  Article  MATH  Google Scholar 

  160. 160.

    Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019b) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321. https://doi.org/10.1007/s00466-018-1595-4

    MathSciNet  Article  MATH  Google Scholar 

  161. 161.

    Aydinbakar L, Takizawa K, Tezduyar TE, Matsuda D (2021a) U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization. Comput Mech 67:823–843. https://doi.org/10.1007/s00466-020-01965-4

    MathSciNet  Article  Google Scholar 

  162. 162.

    Aydinbakar L, Takizawa K, Tezduyar TE, Kuraishi T (2021b) Space-time VMS isogeometric analysis of the Taylor–Couette flow. Comput Mech 67:1515–1541. https://doi.org/10.1007/s00466-021-02004-6

    MathSciNet  Article  MATH  Google Scholar 

  163. 163.

    Cen H, Zhou Q, Korobenko A (2021) Variational multiscale framework for cavitating flows. Comput Fluids. https://doi.org/10.1016/j.compfluid.2020.104765

    Article  MATH  Google Scholar 

  164. 164.

    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125–169. https://doi.org/10.1007/s11831-012-9070-4

    MathSciNet  Article  MATH  Google Scholar 

  165. 165.

    Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012e) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. https://doi.org/10.1007/s00466-012-0761-3

    Article  Google Scholar 

  166. 166.

    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013e) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. https://doi.org/10.1007/s00466-013-0880-5

    Article  MATH  Google Scholar 

  167. 167.

    Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015c) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069. https://doi.org/10.1007/s00466-014-1074-5

    Article  Google Scholar 

  168. 168.

    Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014f) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220. https://doi.org/10.1007/s00466-014-1052-y

    Article  Google Scholar 

  169. 169.

    Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014g) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476. https://doi.org/10.1007/s00466-014-1069-2

    MathSciNet  Article  MATH  Google Scholar 

  170. 170.

    Takizawa K, Tezduyar TE, Kolesar R (2015d) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179. https://doi.org/10.1007/s00466-014-1108-z

    Article  MATH  Google Scholar 

  171. 171.

    Rouse H, McNown JS (1948). Cavitation and pressure distribution: head forms at zero angle of yaw. Technical report, State University of Iowa

  172. 172.

    Rayleigh Lord. VIII (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98

  173. 173.

    Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185

    MATH  Google Scholar 

  174. 174.

    Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34

    MATH  Google Scholar 

  175. 175.

    Owis FM, Nayfeh AH (2001). Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th aerospace sciences meeting and exhibit, p 1042

  176. 176.

    Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech-B/Fluids 23(2):339–351

    MATH  Google Scholar 

  177. 177.

    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    MathSciNet  MATH  Google Scholar 

  178. 178.

    Akin J, Tezduyar TE, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9

    MATH  Google Scholar 

  179. 179.

    Tezduyar TE, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88

    MathSciNet  MATH  Google Scholar 

  180. 180.

    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191–206

    MathSciNet  MATH  Google Scholar 

  181. 181.

    Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209

    MathSciNet  MATH  Google Scholar 

  182. 182.

    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840

    MathSciNet  MATH  Google Scholar 

  183. 183.

    Takizawa K, Tezduyar TE, Otoguro Y (2018c) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186. https://doi.org/10.1007/s00466-018-1557-x

    MathSciNet  Article  MATH  Google Scholar 

  184. 184.

    Otoguro Y, Takizawa K, Tezduyar TE (2019d) Element length calculation in B-spline meshes for complex ceometries. Comput Mech, submitted

  185. 185.

    Hughes TJR, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355

    MathSciNet  MATH  Google Scholar 

  186. 186.

    Tezduyar TE, Park YJ (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325

    MATH  Google Scholar 

  187. 187.

    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575

    MathSciNet  MATH  Google Scholar 

  188. 188.

    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26

    MathSciNet  MATH  Google Scholar 

  189. 189.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862

    MathSciNet  MATH  Google Scholar 

  190. 190.

    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech

  191. 191.

    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319

    MathSciNet  MATH  Google Scholar 

  192. 192.

    Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM

  193. 193.

    Kim S-E (2008) A multiphase approach to turbulent cavitating flow. In: Proceedings of 27th symposium on Naval Hydrodynamics, Seoul, Korea, 2008, pp 572–589

  194. 194.

    Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329

    Google Scholar 

  195. 195.

    Ayyad M, Guaily A, Hassanein MA (2020). Stabilized variational formulation of an oldroyd-B fluid flow equations on a graphic processing unit (GPU) architecture. Comput Phys Commun, p 107495

  196. 196.

    Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: Tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer

  197. 197.

    Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7)

Download references

Acknowledgements

A. Bayram and A. Korobenko were supported by NSERC Discovery Grant, RGPIN-2017-03781. We thank Dr. Francesco Salvatore from CNR-INSEAN for providing INSEAN E779A dataset. We thank Compute Canada and Advanced Research Computing (ARC) at the University of Calgary for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Korobenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayram, A., Korobenko, A. A numerical formulation for cavitating flows around marine propellers based on variational multiscale method. Comput Mech 68, 405–432 (2021). https://doi.org/10.1007/s00466-021-02039-9

Download citation

Keywords

  • Navier–Stokes
  • Finite elements
  • ALE-VMS
  • Cavitation
  • Multi-phase flows
  • Marine propellers