Skip to main content
Log in

Goal-oriented error estimation and adaptivity in MsFEM computations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2021

This article has been updated

Abstract

We introduce a goal-oriented strategy for multiscale computations performed using the Multiscale Finite Element Method (MsFEM). In a previous work, we have shown how to use, in the MsFEM framework, the concept of Constitutive Relation Error (CRE) to obtain a guaranteed and fully computable a posteriori error estimate in the energy norm (as well as error indicators on various error sources). Here, the CRE concept is coupled with the solution of an adjoint problem to control the error and drive an adaptive procedure with respect to a given output of interest. Furthermore, a local and non-intrusive enrichment technique is proposed to enhance the accuracy of error bounds. The overall strategy, which is fully automatic and robust, enables to reach an appropriate trade-off between certified reliability and computational cost in the MsFEM context. The performances of the proposed method are investigated on several illustrative numerical test cases. In particular, the error estimation is observed to be very accurate, yielding a very efficient adaptive procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Change history

References

  1. Abdulle A, Nonnenmacher A (2009) A posteriori error analysis of the heterogeneous multiscale method for homogenization problems. C R Acad Sci Paris, Série I 347:1081–1086

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle A, Nonnenmacher A (2013) A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method. Numer Methods Partial Differ Equ 29(5):1629–1656

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  4. Akbari Rahimabadi A, Kerfriden P, Bordas S (2015) Scale selection in nonlinear fracture mechanics of heterogeneous materials. Phil Mag 95(28–30):3328–3347

    Article  Google Scholar 

  5. Allaire G, Brizzi R (2006) A multiscale finite element method for numerical homogenization. SIAM Multiscale Model Simul 4(3):790–812

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J Numer Math 4:237–264

    MathSciNet  MATH  Google Scholar 

  7. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, Cambridge University Press 10:1–102

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Dhia H, Rateau G (2001) Mathematical analysis of the mixed Arlequin method. C R Acad Sci Paris 332(7):649–654

    Article  MathSciNet  MATH  Google Scholar 

  9. Bensoussan A, Lions J-L, Papanicolaou G (1978) Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, vol. 5, North-Holland, Amsterdam, New York

  10. Blanc X, Le Bris C, Lions P-L (2012) A possible homogenization approach for the numerical simulation of periodic microstructures with defects. Milan J Math 80(2):351–367

    Article  MathSciNet  MATH  Google Scholar 

  11. Blanc X, Le Bris C, Lions P-L (2015) Local profiles and elliptic problems at different scales with defects. C R Acad Sci Paris, Série I 353:203–208

    Article  MATH  Google Scholar 

  12. Blanc X, Le Bris C, Lions P-L (2015) Local profiles for elliptic problems at different scales: defects in, and interfaces between periodic structures. Commun Partial Differ Equ 40(12):2173–2236

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanc X, Le Bris C, Lions P-L (2018) On correctors for linear elliptic homogenization in the presence of local defects. Commun Partial Differ Equ 43(6):965–997

    Article  MathSciNet  MATH  Google Scholar 

  14. Blanc X, Le Bris C, Lions P-L (2019) On correctors for linear elliptic homogenization in the presence of local defects: the case of advection-diffusion. J de Math Pures et Appl 124:106–122

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi F, Lions J-L, Pironneau O (2001) Analysis of a chimera method. C R Acad Sci Paris 332:655–660

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao T, Kelly DW (2003) Pointwise and local error estimates for the quantities of interest in two-dimensional elasticity. Comput Math Appl 46(1):69–79

    Article  MathSciNet  MATH  Google Scholar 

  17. Chamoin L, Ladevèze P (2008) A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Comput Methods Appl Mech Eng 197(9–12):994–1014

    Article  MathSciNet  MATH  Google Scholar 

  18. Chamoin L, Legoll F. A pedagogical view on a posteriori error estimation in finite element analysis. Submitted

  19. Chamoin L, Legoll F (2018) A posteriori error estimation and adaptive strategy for the control of MsFEM computations. Comput Methods Appl Mech Eng 336:1–38

    Article  MathSciNet  MATH  Google Scholar 

  20. Chamoin L, Legoll F. Goal-oriented error estimation and adaptivity in MsFEM computations. arXiv preprint arXiv:1908.00367

  21. Chung ET, Leung WT, Pollock S (2016) Goal-oriented adaptivity for GMsFEM. J Comput Appl Math 296:625–637

    Article  MathSciNet  MATH  Google Scholar 

  22. Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156:351–362

    Article  MathSciNet  MATH  Google Scholar 

  23. E W, Engquist B, Huang Z (2003) Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys Rev B 67(9):092101

    Article  Google Scholar 

  24. Efendiev Y, Galvis J, Hou T (2013) Generalized multiscale finite element methods. J Comput Phys 251:116–135

    Article  MathSciNet  MATH  Google Scholar 

  25. Efendiev Y, Hou T (2009) Multiscale finite element methods: theory and applications. Springer, New York

    MATH  Google Scholar 

  26. Efendiev Y, Hou T, Wu XH (2000) Convergence of a nonconforming multiscale finite element method. SIAM J Numer Anal 37(3):888–910

    Article  MathSciNet  MATH  Google Scholar 

  27. Ekre F, Larsson F, Runesson K (2019) On error controlled numerical model reduction in FE2-analysis of transient heat flow. Int J Numer Meth Eng 119(1):38–73

    Article  Google Scholar 

  28. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    Article  MATH  Google Scholar 

  29. Fraeijs de Veubeke B, Hugge MA (1972) Dual analysis for heat conduction problems by finite elements. Int J Numer Meth Eng 5(1):65–82

    Article  MATH  Google Scholar 

  30. Gendre L, Allix O, Gosselet P, Comte F (2009) Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44(2):233–245

    Article  MathSciNet  MATH  Google Scholar 

  31. Ghorashi S, Lahmer T, Bagherzadeh AS, Zi G, Rabczuk T (2017) A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials. Eng Geol 225:103–113

    Article  Google Scholar 

  32. Giles MB, Suli E (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11:145–236

    Article  MathSciNet  MATH  Google Scholar 

  33. Grätsch T, Hartmann F (2003) Finite element recovery techniques for local quantities of linear problems using fundamental solutions. Comput Mech 33:15–21

    Article  MathSciNet  MATH  Google Scholar 

  34. Henning P, Ohlberger M, Schweizer B (2014) An adaptive multiscale finite element method. SIAM Multiscale Model Simul 12(3):1078–1107

    Article  MathSciNet  MATH  Google Scholar 

  35. Hou T, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189

    Article  MathSciNet  MATH  Google Scholar 

  36. Hou T, Wu XH, Cai Z (1999) Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math Comput 68(227):913–943

    Article  MathSciNet  MATH  Google Scholar 

  37. Hughes TJR, Feijoo GR, Mazzei L, Quincy JB (1998) The variational multiscale method - A paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24

    Article  MathSciNet  MATH  Google Scholar 

  38. Irisarri D, Hauke G (2016) A posteriori pointwise error computation for 2-D transport equations based on the variational multiscale method. Comput Methods Appl Mech Eng 311:648–670

    Article  MathSciNet  MATH  Google Scholar 

  39. Jhurani C, Demkowicz L (2012) Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part 1: mathematical formulation and numerical results. Comput Methods Appl Mech Eng 213–216:399–417

    Article  MathSciNet  MATH  Google Scholar 

  40. Ladevèze P (2008) Strict upper error bounds for calculated outputs of interest in computational structural mechanics. Comput Mech 42(2):271–286

    Article  MATH  Google Scholar 

  41. Ladevèze P, Chamoin L (2010) Calculation of strict error bounds for finite element approximations of nonlinear pointwise quantities of interest. Int J Numer Meth Eng 84:1638–1664

    Article  MATH  Google Scholar 

  42. Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

    Article  MathSciNet  MATH  Google Scholar 

  43. Ladevèze P, Maunder EAW (1996) A general method for recovering equilibrating element tractions. Comput Methods Appl Mech Eng 137:111–151

    Article  MATH  Google Scholar 

  44. Ladevèze P, Pelle J-P (2004) Mastering calculations in linear and nonlinear mechanics. Springer, Berlin

    MATH  Google Scholar 

  45. Ladevèze P, Pled F, Chamoin L (2013) New bounding techniques for goal-oriented error estimation applied to linear problems. Int J Numer Meth Eng 93(13):1345–1380

    Article  MathSciNet  MATH  Google Scholar 

  46. Larson MG, Malqvist A (2005) Adaptive variational multiscale methods based on a posteriori error estimation: duality techniques for elliptic problems. In Engquist B, Lötstedt P, and Runborg O (eds), Multiscale methods in science and engineering, vol 44 of Lecture Notes in Computational Science and Engineering, pp 181–193. Springer

  47. Larson MG, Malqvist A (2007) Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput Methods Appl Mech Eng 196(21–24):2313–2324

    Article  MathSciNet  MATH  Google Scholar 

  48. Le Bris C, Legoll F, Lozinski A (2014) An MsFEM type approach for perforated domains. SIAM Multiscale Model Simul 12(3):1046–1077

    Article  MathSciNet  MATH  Google Scholar 

  49. Le Bris C, Legoll F, Thomines F (2014) Multiscale finite element approach for “weakly” random problems and related issues. Math Model Numer Anal 48(3):815–858

    Article  MathSciNet  MATH  Google Scholar 

  50. Lions J-L, Pironneau O (1999) Domain decomposition methods for CAD. C R Acad Sci Paris Série I 328(1):73–80

    Article  MathSciNet  MATH  Google Scholar 

  51. Lozinski A, Pironneau O (2011) Numerical zoom for advection diffusion problems with localized multiscales. Numer Methods Partial Differ Equ 27:197–207

    Article  MathSciNet  MATH  Google Scholar 

  52. Maier M, Rannacher R (2016) Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems. J Numer Math 24(3):167–187

    Article  MathSciNet  MATH  Google Scholar 

  53. Malqvist A, Peterseim D (2014) Localization of elliptic multiscale problems. Math Comput 83(290):2583–2603

    Article  MathSciNet  MATH  Google Scholar 

  54. Nolen J, Papanicolaou G, Pironneau O (2008) A framework for adaptive multiscale methods for elliptic problems. SIAM Multiscale Model Simul 7(1):171–196

    Article  MathSciNet  MATH  Google Scholar 

  55. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41:735–756

    Article  MathSciNet  MATH  Google Scholar 

  56. Oden JT, Prudhomme S (2002) Estimation of modeling error in Computational Mechanics. J Comput Phys 182:496–515

    Article  MathSciNet  MATH  Google Scholar 

  57. Oden JT, Reddy JN (1974) On dual complementary variational principles in mathematical physics. Int J Eng Sci 12:1–29

    Article  MathSciNet  MATH  Google Scholar 

  58. Oden JT, Vemaganti K (2000) Estimation of local modeling error and goal-oriented modeling of heterogeneous materials; Part 1: Error estimates and adaptive algorithms. J Comput Phys 164:22–47

    Article  MathSciNet  MATH  Google Scholar 

  59. Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172(1–4):3–25

    Article  MathSciNet  MATH  Google Scholar 

  60. Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Meth Eng 81:671–700

    Article  MathSciNet  MATH  Google Scholar 

  61. Paraschivoiu M, Peraire J, Patera AT (1997) A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations. Comput Methods Appl Mech Eng 150:289–312

    Article  MathSciNet  MATH  Google Scholar 

  62. Pled F, Chamoin L, Ladevèze P (2011) On the techniques for constructing admissible stress fields in model verification: performances on engineering examples. Int J Numer Meth Eng 88(5):409–441

    Article  MATH  Google Scholar 

  63. Prudhomme S, Chamoin L, Ben Dhia H, Bauman PT (2009) An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations. Comput Methods Appl Mech Eng 198(21–26):1887–1901

    Article  MATH  Google Scholar 

  64. Prudhomme S, Oden JT (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176:313–331

    Article  MathSciNet  MATH  Google Scholar 

  65. Rannacher R, Suttmeier FT (1997) A feedback approach to error control in finite element methods: application to linear elasticity. Comput Mech 19:434–446

    Article  MathSciNet  MATH  Google Scholar 

  66. Strouboulis T, Copps K, Babuska I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    Article  MathSciNet  MATH  Google Scholar 

  67. Strouboulis T, Zhang L, Wang D, Babuska I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195:852–879

    Article  MathSciNet  MATH  Google Scholar 

  68. Tirvaudey M, Chamoin L, Bouclier R, Passieux J-C (2020) A posteriori error estimation and adaptivity in non-intrusive couplings between concurrent models. Comput Methods Appl Mech Eng 367:113104

    Article  MathSciNet  MATH  Google Scholar 

  69. Vemaganti K, Oden JT (2001) Estimation of local modeling error and goal-oriented modeling of heterogeneous materials; Part 2: A computational environment for adaptive modeling of heterogeneous elastic solids. Comput Methods Appl Mech Eng 190:6089–6124

    Article  MATH  Google Scholar 

  70. Verfürth R (1996) A review of a posteriori error estimates and adaptive mesh-refinement techniques. Wiley-Teubner, New York

    MATH  Google Scholar 

  71. Waeytens J, Chamoin L, Ladevèze P (2012) Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Comput Mech 49:291–307

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank C. Le Bris for stimulating discussions on the topics addressed in this article. LC thanks Inria for enabling his two-year leave (2014–2016) in the MATHERIALS project team. The work of FL is partially supported by ONR under grant N00014-15-1-2777 and by EOARD under grant FA9550-17-1-0294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Chamoin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamoin, L., Legoll, F. Goal-oriented error estimation and adaptivity in MsFEM computations. Comput Mech 67, 1201–1228 (2021). https://doi.org/10.1007/s00466-021-01990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-01990-x

Keywords

Mathematics Subject Classification

Navigation