Skip to main content
Log in

Non-intrusive and exact global/local techniques for structural problems with local plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces a computational strategy to solve structural problems featuring nonlinear phenomena that occur within a small area, while the rest of the structure retains a linear elastic behavior. Two finite element models are defined: a global linear model of the whole structure, and a local nonlinear “submodel” meant to replace the global model in the nonlinear area. An iterative coupling technique is then used to perform this replacement in an exact but non-intrusive way, which means the model data sets are never modified and the computations can be carried out with standard finite element software. Several ways of exchanging data between the models are discussed and their convergence properties are investigated on two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akgün MA, Garcelon JH, Haftka RT (2001) Fast exact linear and nonlinear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Num Meth Eng 50: 1587–1606

    Article  MATH  Google Scholar 

  2. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. Comptes-rendus de l’Académie des Sciences IIb(326): 899–904

    Google Scholar 

  3. Cormier NG, Smallwood BS, Sinclair GB, Meda G (1999) Aggressive submodelling of stress concentrations. Int J Num Meth Eng 46: 889–909

    Article  MATH  Google Scholar 

  4. Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods: application to post-buckling analyses. Comp Meth Appl Mech Eng 196(8): 1436–1446

    Article  MathSciNet  Google Scholar 

  5. Düster A, Rank E, Steinl G, Wunderlich W (1999) A combination of an h- and a p-version of the finite element method for elastic-plastic problems. In: Wunderlich W (ed) ECCM ’99, CD-ROM proceedings of the European Conference on Computational Mechanics, Munich

  6. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Int J Num Meth Eng 50(2001): 1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  7. Guidault PA, Allix O, Champaney L, Navarro JP (2007) A two-scale approach with homogenization for the computation of cracked structures. Comp Struct 85(17–18): 1360–1371

    Article  MathSciNet  Google Scholar 

  8. Hirai I, Wang BP, Pilkey WD (1984) An efficient zooming method for finite element analysis. Int J Num Meth Eng 20: 1671–1683

    Article  MATH  Google Scholar 

  9. Hirai I (1985) An exact zooming method. Finite Elem Anal Design 1: 61–69

    Article  MATH  Google Scholar 

  10. Jara-Almonte CC, Knight CE (1988) The specified boundary stiffness and force (SBSF) method for finite element subregion analysis. Int J Num Meth Eng 26: 1567–1578

    Article  Google Scholar 

  11. Kelley FS (1982) Mesh requirements for the analysis of a stress concentration by the specified boundary displacement method. In: Proceedings of the Second International Computers in Engineering Conference, ASME, Aug. 1982

  12. Ladevèze P, Dureisseix D (2000) A micro/macro approach for parallel computing of heterogeneous structures. Int J Comp Civil Struct Eng 1: 18–28

    Google Scholar 

  13. Le Tallec P (1994) Domain-decomposition methods in computational mechanics. Comp Mech Adv 1(2): 121–220

    MATH  MathSciNet  Google Scholar 

  14. Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Num Linear Algebra Appl 10: 639–659

    Article  MATH  MathSciNet  Google Scholar 

  15. Mao KM, Sun CT (1991) A refined global-local finite element analysis method. Int J Num Meth Eng 32: 29–43

    Article  MATH  Google Scholar 

  16. Oden JT, Zohdi TI (1996) Analysis and adaptive modeling of highly heterogeneous elastic structures. Comp Meth Appl Mech Eng 148: 367–391

    Article  MathSciNet  Google Scholar 

  17. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual domain decomposition method: application to structural problems with damage. Accepted in Int J Multiscale Comp Eng

  18. Srinivasan S, Biggers SB Jr, Latour RA Jr (1996) Identifying global/local interface boundaries using an objective search method. Int J Num Meth Eng 39: 805–828

    Article  MATH  Google Scholar 

  19. Voleti SR, Chandra N, Miller JR (1995) Global-local analysis of large-scale composite structures using finite element methods. Comp Struct 58(3): 453–464

    Article  Google Scholar 

  20. Whitcomb JD (1991) Iterative global-local finite element analysis. Comp Struct 40(4): 1027–1031

    Article  Google Scholar 

  21. Yip EL (1986) A note on the stability of solving a rank-p modification of a linear system by the Sherman-Morrison-Woodbury formula. SIAM J Sci Stat Comput 7: 507–513

    Article  MATH  MathSciNet  Google Scholar 

  22. Zohdi TI, Wriggers P, Huet C (2001) A method of substructuring large-scale computational micromechanical problems. Comp Meth Appl Mech Eng 190(43–44): 5639–5656

    Article  MATH  Google Scholar 

  23. Zohdi TI, Wriggers P (1999) A domain decomposition method for bodies with microstructure based upon material regularization. Int J Solids Struct 36(1): 2507–2526

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Gendre.

Additional information

This work is supported by Snecma and is part of the MAIA-MM1 research program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gendre, L., Allix, O., Gosselet, P. et al. Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44, 233–245 (2009). https://doi.org/10.1007/s00466-009-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0372-9

Keywords

Navigation