Skip to main content

History of the Finite Element Method – Mathematics Meets Mechanics – Part II: Mathematical Foundation of Primal FEM for Elastic Deformations, Error Analysis and Adaptivity

  • Chapter
The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering

Part of the book series: Lecture Notes in Applied Mathematics and Mechanics ((LAMM,volume 1))

  • 5029 Accesses

Abstract

This chapter treats the history of mathematical foundation of primal FEM, especially a posteriori error estimates and adaptivity, based on functional analysis in Sobolev spaces. This is of equal importance as the creation of multifarious computational methods and techniques in engineering and computer sciences. BVPs for linear elliptic PDEs, mainly the Lamè equations for linear static elasticity are treated.

Bounded residual explicit and various implicit error estimators of primal FEM were mainly developed by Babuška and Rheinboldt (1978), Bank and Weiser (1985), Babuška and Miller (1987) and Aubin (1967) and Nietsche (1977).

Mechanically motivated explicit and implicit error estimators were created by Zienkiewicz and Zhu (1987), using gradient smoothing of the C 0- continuous displacements and stress recovery for which convergence and upper bound property were proven by Carstensen and Funken (2001).

A variant of implicit a posteriori error estimators is the error of consitutive equations by Ladevèze et al. (1998). Equilibrated test stresses on element and patch levels are required, Ladevèze, Pelle (2005). Gradient-free formulations, e.g. by Cottereau, Díez and Huerta (2009), are also competitive. Generalizations of a priori and a posteriori error estimates, using the three-functional theorem by Prager and Synge (1947), are very useful.

Goal-oriented error estimators for quantities of interest (as linear or nonlinear functionals, defined of closed finite supports) are of practical importance, Eriksson et al. (1995), Rannacher and Suttmeier (1997), Cirac and Ramm (1998), Ohnimus et al. (2001), Stein and Rüter (2004) and others. Textbooks by Verfürth (1996, 1999, 2013), Ainsworth and Oden (2000), Babuška and Strouboulis (2001), are available.

Verification with prescribed error tolerances is realized with the above cited bounded error estimators and related discretization adaptivity, provided that the solution exists in the used test space.

Moreover, model validation requires model adaptivity of the adequate physical and mathematical modeling which additionally needs experimental verification, requiring a posteriori model error estimators combined with discretization error estimators.

Model reductions, e.g. for reinforced laminates, were treated by Oden (2002), and model expansions, e.g. for 3D boundary layers of 2D plate and shell theories by Stein and Ohnimus (1997), and Stein, Rüter and Ohnimus (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIAA guide for the verification and validation of computational fluid dynamics simulations. AIAA Report G-077-1988, AIAA (1998)

    Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A posteriori error estimators in finite element analysis. John Wiley & Sons, Chichester (2000)

    Book  Google Scholar 

  3. Apel, T.: Interpolation in h-version finite element spaces. In: Stein et al. [84], vol. 1, ch. 3, pp. 55–70 (2004)

    Google Scholar 

  4. Armero, F.: Elastoplastic and viscoplastic deformations in solids and structures. In: Stein et al. [84], vol. 2, ch. 7, pp. 227–266 (2004)

    Google Scholar 

  5. Aubin, J.P.: Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 599–637 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Auricchio, F., Brezzi, F., Lovadina, C.: Mixed finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Fundamentals, ch. 9, pp. 237–278. Wiley (2004)

    Google Scholar 

  7. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Num. Meth. Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  8. Babuška, I., Miller, A.: The post-processing approach in the finite element method – part 2: the calculation of stress intensity factors. Int. J. Num. Meth. Eng. 20, 1111–1129 (1984)

    Article  MATH  Google Scholar 

  9. Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimation: Part i. the finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Engng. 61, 1–40 (1987)

    Article  MATH  Google Scholar 

  10. Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Num. Meth. Engng. 12, 1597–1615 (1978)

    Article  MATH  Google Scholar 

  11. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Oxford University Press, New York (2001)

    Google Scholar 

  12. Babuška, I., Strouboulis, T., Mathur, A., Upadhyay, C.S.: Pollution-error in the h-version of finite element method and the local quality of a-posteriori error estimators. Finite Elem. Anal. Des. 17, 273–321 (1994)

    Article  MathSciNet  Google Scholar 

  13. Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K.: A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method. Int. J. Num. Meth. Eng. 38, 4207–4235 (1995)

    Article  MATH  Google Scholar 

  14. Babuška, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29, 1261–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Babuška, I., Szabó, B., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Babuška, I., Whiteman, J.R., Strouboulis, T.: Finite elements. An introduction to the method and error estimation. Oxford University Press (2011)

    Google Scholar 

  17. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Becker, R., Rannacher, R.: Weighted a posteriori error control in FE methods. In: Bock, H.G., et al. (eds.) Proc. ENUMATH 1997, pp. 621–637. World Scient. Publ., Singapore (1998)

    Google Scholar 

  20. Belytschko, T., Black, T.: Elastic growth in finite elements with minimal remeshing. Int. J. Num. Meth. Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Belytschko, T., Chen, J.S.: Meshfree and particle methods. John Wiley (2007)

    Google Scholar 

  22. Belytschko, T., Huerta, A., Fernandez-Méndez, S., Rabczuk, T.: Meshless methods. In: Stein et al. [84], vol. 1, ch. 10 (2004)

    Google Scholar 

  23. Bischoff, M., Wall, W.A., Bletzinger, K.-U., Ramm, E.: Models and finite elements for thin-walled structures. In: Stein et al. [84], vol. 2, ch. 3, pp. 59–138 (2004)

    Google Scholar 

  24. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. algorithms. Finite Elem. Anal. Des. 25, 61–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Braess, D.: Finite elements, 2nd edn. Cambridge University Press (2001), 1st ed. (1997)

    Google Scholar 

  26. Braess, D.: Finite Elemente, 5th edn. Springer Spektrum (2013), 1st edn. (1992)

    Google Scholar 

  27. Braess, D., Schöberl, J.: Equilibrated residual error estimator for hedge elements. Math. Comp. 77, 651–672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bramble, J.H., Hilbert, A.H.: Estimation of linear functionals on Sobolev spaces with applications to fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 113–124 (1970)

    Article  MathSciNet  Google Scholar 

  29. Brenner, S.C., Carstensen, C.: Finite Element Methods. In: Stein et al. [84], vol. 1, ch. 4, pp. 73–118 (2004)

    Google Scholar 

  30. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, 1994 (2002)

    Google Scholar 

  31. Bufler, H., Stein, E.: Zur Plattenberechnung mittels finiter Elemente. Ingenieur-Archiv 39, 248–260 (1970)

    Article  MATH  Google Scholar 

  32. Carstensen, C., Funken, S.A.: Averaging technique for FE-a posteriori error control in elasticity. Comput. Methods Appl. Mech. Engng. 190, 2483–2498, 4663–4675; 191, 861–877 (2001)

    Google Scholar 

  33. Céa, J.: Approximation variationnelle des problèmes aux limites (phd thesis). Annales de l’institut Fourier 14(2), 345–444 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.: Comp. Meth. in Appl. Mech. and Eng. 139, 195–227 (1996)

    Google Scholar 

  35. Cirak, F., Ramm, E.: A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput. Methods Appl. Mech. Engng. 156, 351–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cirak, F., Ramm, E.: A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem. Int. J. Num. Meth. Eng. 47, 379–394 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dìez, P., Parés, N., Huerta, A.: Error estimation and quality control. In: Encyclopedia of Aerospace Engineering, vol. 3, ch. 144, pp. 1725–1734. Wiley (2010)

    Google Scholar 

  38. Dìez, P., Wiberg, N.-E., Bouillard, P., Moitinho de Almeida, J.P., Tiago, C., Parés, N. (eds.): Adaptive Modeling and Simulation. CIMNE, Barcelona (2003, 2005, 2007, 2009, 2011, 2013)

    Google Scholar 

  39. Dirichlet, P.G.L.: Gustav Lejeune Dirichlet’s Werke. Collection of the University of Michigan (1889)

    Google Scholar 

  40. Duarte, C.A., Babuška, I., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures 77, 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  41. Edelsbrunner, H.: Geometry and topology for mesh generation. Cambridge University Press, U.K (2001)

    Book  MATH  Google Scholar 

  42. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational differential equations. Cambridge University Press, USA (1996)

    MATH  Google Scholar 

  43. Eriksson, K., Estep, D., Hansbo, P., Johnson, J.: Introduction to adaptive methods for differential equations. Acta Numerica, 105–158 (1995)

    Google Scholar 

  44. Fix, G.J., Gulati, S., Wakoff, G.I.: On the use of singular functions with finite element approximations. Journal of Computational Physics 13, 209–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  45. Friedrichs, K.O.: On the boundary value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48, 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gallimard, L., Ladevèze, P., Pelle, J.-P.: Error estimation and adaptivity in elastoplasticity. Int. J. Num. Meth. Eng. 39, 189–217 (1996)

    Article  MATH  Google Scholar 

  47. Gerasimov, T., Stein, E., Wriggers, P.: New simple, cheap and efficient constant-free explicit error estimator for adaptive FEM analysis in linear elasticity and fracture. Int. J. Num. Meth. Eng. (submitted 2013)

    Google Scholar 

  48. Han, W., Meng, X.: Comp. Meth. in Appl. Mech. and Eng. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hilbert, D.: Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, Band VI (1928)

    Google Scholar 

  50. Ibrahimbegovic, A.: Nonlinear solid mechanics – theoretical formulations and finite element solution methods. Springer (2009)

    Google Scholar 

  51. Johnson, C.: A new paradigm for adaptive finite element methods. In: Whiteman, J. (ed.) Proc. MAFLEAP 1993. John Wiley (1993)

    Google Scholar 

  52. Ladevèze, P.: Constitutive relation error estimations for finite element analyses considering (visco) plasticity and damage. Int. J. Num. Meth. Eng. 52, 527–542 (2001)

    Article  MATH  Google Scholar 

  53. Ladevèze, P.: Strict upper error bounds on computed outputs of interest in computational structural mechanics. Comp. Mech. 42, 271–286 (2008)

    Article  MATH  Google Scholar 

  54. Ladevèze, P.: Model verification through guaranteed upper bounds: state of the art and challenges. In: Aubry, D., Díez, P., Tie, B., Parès, N. (eds.) Adaptive Modeling and Simulation 2011, pp. 20–29. CIMNE, Barcelona (2011)

    Google Scholar 

  55. Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983); Translated from the French edition by Hermes-Lavoisier Science Publishers, Paris (2001)

    Google Scholar 

  56. Ladevèze, P., Maunder, E.A.W.: A general method for recovering equilibrating element tractions. Comp. Meth. in Appl. Mech. and Eng. 137, 111–151 (1996)

    Article  MATH  Google Scholar 

  57. Ladevèze, P., Moës, N.: A new a posteriori error estimation for nonlinear time-dependent finite element analysis. Comp. Meth. in Appl. Mech. and Eng. 157, 45–68 (1998)

    Article  MATH  Google Scholar 

  58. Ladevèze, P., Pelle, J.-P.: Mastering calculations in linear and nonlinear mechanics.Springer Science+Business Media, Inc. (2005); Translated from the French edition by Hermes-Lavoisier Science Publishers, Paris (2001)

    Google Scholar 

  59. Larsson, F., Hansbo, P., Runesson, K.: On the computation of goal-oriented a posteriori error measures in nonlinear elasticity. Int. J. Num. Meth. Eng. 55, 379–394 (2002)

    Article  MathSciNet  Google Scholar 

  60. Lax, P.D.: Selected papers, vol. I, II. Springer, Berlin (2005)

    MATH  Google Scholar 

  61. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Num. Meth. Eng. 60, 153–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Liu, W.K., Jun, S., Zhang, Y.F.: Int. J. Num. Meth. Eng. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  63. Neittaanmäki, P., Repin, S.: Reliable methods for computer simulation, Error control and a posteriori estimates. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  64. Niekamp, R., Stein, E.: An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations. Computers & Structures 80, 317–328 (2002)

    Article  MATH  Google Scholar 

  65. Nitsche, J.A.: l  ∞ -convergence of finite element approximations. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, pp. 261–274. Springer, New York (1977)

    Chapter  Google Scholar 

  66. Oden, J.T., Carey, G.F.: Finite elements. Mathematical aspects, vol. IV. Prentice Hall, Inc. (1983)

    Google Scholar 

  67. Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 496–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ortiz, M., Simo, J.C.: Analysis of a new class of integration algorithms for elastoplastic constitutive equations. Int. J. Num. Meth. Eng. 21, 353–366 (1986)

    Article  MathSciNet  Google Scholar 

  69. Poincaré, H.: Cours professé à la Faculté des Sciences de Paris - mécanique physique. L’Association amicale des élèves et anciens élv̀es de la Faculté des sciences - Cours de Physique Mathématique (1885)

    Google Scholar 

  70. Prager, W., Synge, J.L.: Approximations in eleasticity based on the concept of function spaces. Quart. Appl. Math. 5, 241–269 (1949)

    MathSciNet  Google Scholar 

  71. Rannacher, R.: Duality techniques for error estimation and mesh adaptation in finite element methods. In: Stein [82], ch. 1, pp. 1–58 (2005)

    Google Scholar 

  72. Rannacher, R., Suttmeier, F.-T.: Error estimation and adaptive mesh design for FE models in elasto-plasticity theory. In: Stein [81], ch. 2, pp. 5–52 (2003)

    Google Scholar 

  73. Rheinboldt, W.C.: Nonlinear systems and bifurcations. In: Stein et al. [84], vol. 1, ch. 23, pp. 649–674 (2004)

    Google Scholar 

  74. Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM Journal on Numerical Analysis 21, 604–613 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  75. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers (1998)

    Google Scholar 

  76. Rodríguez, R.: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Diff. Equations 10, 625–635 (1994)

    Article  MATH  Google Scholar 

  77. Rüter, M.: Error-controlled adaptive finite element methods in large strain hyperelasticity and fracture mechanics. Institute report F03/1 Institut für Baumechanik und Numerische Mechanik, Leibniz Universität Hannover (2003)

    Google Scholar 

  78. Schwer, L.E.: An overview of the PTC 60/V&V 10: guide for verification and validation in computational solid mechanics. Engineering with Computers 23(4), 245–252 (2007)

    Article  Google Scholar 

  79. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  80. Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics. Mathematical Monographs, vol. 7. AMS, Providence (1963)

    MATH  Google Scholar 

  81. Stein, E. (ed.): Error-controlled adaptive finite elements in solid mechanics. Wiley (2003)

    Google Scholar 

  82. Stein, E. (ed.): Adaptive finite elements in linear and nonlinear solid and structural mechanics. CISM courses and lectures (Udine), vol. 416. Springer, Wien (2005)

    MATH  Google Scholar 

  83. Stein, E., Ahmad, R.: An equilibrium method for stress calculation using finite element methods in solid and structural mechanics. Comp. Meth. in Appl. Mech. and Eng. 10, 175–198 (1977)

    Article  MATH  Google Scholar 

  84. Stein, E., de Borst, R., Hughes, T.J.R. (eds.): Encyclopedia of Computational Mechanics, vol. 1: Fundamentals, vol. 2: Solids and Structures, vol. 3: Fluids. John Wiley & Sons, Chichester (2004) (2nd edition in Internet 2007)

    Google Scholar 

  85. Stein, E., Niekamp, R., Ohnimus, S., Schmidt, M.: Hierarchical Model and Solution Adaptivity of thin-walled Structures by the Finite-Element-Method. In: Stein [82], ch. 2, pp. 59–147 (2005)

    Google Scholar 

  86. Stein, E., Ohnimus, S.: Coupled model- and solution adaptivity in the finite element method. Comp. Meth. in Appl. Mech. and Eng. 150, 327–350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  87. Stein, E., Ohnimus, S.: Anisotropic discretization- and model- error estimation in solids mechanics by local neumann problems. Comp. Meth. in Appl. Mech. and Eng. 176, 363–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  88. Stein, E., Rüter, M.: Finite Element Methods for elasticity with error-controlled discretization and model adaptivity. In: Stein et al. [84], vol. 2, ch. 2 (2004)

    Google Scholar 

  89. Stein, E., Rüter, M., Ohnimus, S.: Implicit upper bound error estimates for combined expansive model and discretization adaptivity. Comput. Methods Appl. Mech. Engng. 200, 2626–2638 (2011)

    Article  MATH  Google Scholar 

  90. Stein, E., Schmidt, M.: Adaptive FEM for elasto-plastic deformations. In: Stein [81], ch. 3, pp. 53–107 (2003)

    Google Scholar 

  91. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, Inc. (1973); Reprinted by Wellesly-Cambridge Press (1988)

    Google Scholar 

  92. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh refinement technis. Wiley-Teubner, Chichester (1996)

    Google Scholar 

  93. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press (2013)

    Google Scholar 

  94. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Num. Meth. Eng. 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  95. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery (SPR) and adaptive finite element refinements. Comput. Methods Appl. Mech. Engng. 101, 207–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stein, E. (2014). History of the Finite Element Method – Mathematics Meets Mechanics – Part II: Mathematical Foundation of Primal FEM for Elastic Deformations, Error Analysis and Adaptivity. In: Stein, E. (eds) The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39905-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39905-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39904-6

  • Online ISBN: 978-3-642-39905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics