Skip to main content
Log in

A mixture theory-based finite element formulation for the study of biodegradation of poroelastic scaffolds

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Surgical implants, known as Tissue Engineered Nerve Guides (TENGs) are often inserted to provide alignment and mechanical support to broken or damaged nerves. These implants are designed to be poroelastic and biodegradable, and the ideal rate of degradation would be that equal to the rate of regrowth of the recovering nerve. Inspired by the design of these TENGs, we develop a mixture theory based mathematical model to simulate the degradation of a poroelastic solid immersed in a fluid bath. The temporal evolution of the solid’s mechanical and transport properties is also modeled. The model comprises of the degrading solid, the degradation reaction products, and the fluid in which the solid is immersed. The resultant governing equations are formulated in an Arbitrary Lagrangian–Eulerian (ALE) framework. The weak formulation of the partial differential equations (PDEs) so derived is numerically implemented using a finite element method (FEM). The numerical model is studied for stability and convergence rates using the Method of Manufactured Solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This notation is typical in the fluid mechanics literature (cf. [11]). In the continuum mechanics literature, the operation in question is typically denoted by \(( \nabla _{{\mathbf {x}}}{\mathbf {v}} ){\mathbf {u}}\) (cf. [7, 19]).

References

  1. Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. Z Angew Math Phys 61(1):177–191. https://doi.org/10.1007/s00033-009-0037-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445. https://doi.org/10.1007/s10237-006-0070-x

    Article  Google Scholar 

  3. Babuška I (1973) The finite element method with lagrangian multipliers. Numer Math 20(3):179–192. https://doi.org/10.1007/BF01436561

    Article  MathSciNet  MATH  Google Scholar 

  4. Baek S, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128(1):142–149. https://doi.org/10.1115/1.2132374

    Article  Google Scholar 

  5. Bellamkonda RV (2006) Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27(19):3515–3518. https://doi.org/10.1016/j.biomaterials.2006.02.030

    Article  Google Scholar 

  6. Bowen RM (1969) The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch Ration Mech Anal 34(2):97–127. https://doi.org/10.1007/BF00247461

    Article  MATH  Google Scholar 

  7. Bowen RM (1976) Theory of mixtures in continuum physics. Contin Phys. https://doi.org/10.1016/B978-0-12-240803-8.X5001-4

    Article  Google Scholar 

  8. Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18(9):1129–1148. https://doi.org/10.1016/0020-7225(80)90114-7

    Article  MATH  Google Scholar 

  9. Bowen RM (1989) Introduction to continuum mechanics for engineers. Plenum Press http://hdl.handle.net/1969.1/2501

  10. Bowen RM, Wiese JC (1969) Diffusion in mixtures of elastic materials. Int J Eng Sci 7(7):689–722. https://doi.org/10.1016/0020-7225(69)90048-2

    Article  MATH  Google Scholar 

  11. Chorin AJ, Marsden JE (2000) A mathematical introduction to fluid mechanics, 3rd edn. Springer, New York. https://doi.org/10.1007/978-1-4684-0364-0

    Book  MATH  Google Scholar 

  12. COMSOL AB (2019) COMSOL multiphysics® v.5.4 reference manual. Stockholm, Sweden. www.comsol.com

  13. Costanzo F, Miller ST (2017) An arbitrary Lagrangian–Eulerian finite element formulation for a poroelasticity problem stemming from mixture theory. Comput Methods Appl Mech Eng 323:64–97. https://doi.org/10.1016/j.cma.2017.05.006

  14. Dey J, Xu H, Shen J, Thevenot P, Gondi SR, Nguyen KT, Sumerlin BS, Tang LT, Yang J (2008) Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 29(35):4637–4649. https://doi.org/10.1016/j.biomaterials.2008.08.020

    Article  Google Scholar 

  15. Dey J, Xu H, Nguyen KT, Yang J (2010) Crosslinked urethane doped polyester biphasic scaffolds: potential for in vivo vascular tissue engineering. J Biomed Mater Res Part A 95A(2):361–370. https://doi.org/10.1002/jbm.a.32846

    Article  Google Scholar 

  16. Dodla MC, Alvarado-Velez M, Mukhatyar VJ, Bellamkonda RV (2019) Chapter 69—peripheral nerve regeneration. In: Atala A, Lanza R, Mikos AG, Nerem R (eds) Principles of regenerative medicine, 3rd edn. Academic Press, Boston, pp 1223–1236. https://doi.org/10.1016/B978-0-12-809880-6.00069-2

    Chapter  Google Scholar 

  17. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics. Modeling, simulation and applications (MS&A), vol 1. Springer Milan, Berlin, Heidelberg, New York. https://doi.org/10.1007/978-88-470-1152-6

  18. Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J Mech Phys Solids 52(7):1595–1625. https://doi.org/10.1016/j.jmps.2004.01.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurtin M, Fried E, Anand L (2013) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge [u.a.]

    Google Scholar 

  20. Hall RB, Rajagopal KR (2012) Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math Mech Solids 17(2):131–164. https://doi.org/10.1177/1081286511407754

    Article  MathSciNet  MATH  Google Scholar 

  21. Han X, Pan J (2009) A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30(3):423–430. https://doi.org/10.1016/j.biomaterials.2008.10.001

    Article  Google Scholar 

  22. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407–430. https://doi.org/10.1142/S0218202502001714

    Article  MathSciNet  MATH  Google Scholar 

  23. Karra S, Rajagopal KR (2012) A model for the thermo-oxidative degradation of polyimides. Mech Time-Depend Mater 16(3):329–342. https://doi.org/10.1007/s11043-011-9165-6

    Article  Google Scholar 

  24. Klisch SM, Chen SS, Sah RL, Hoger A (2003) A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J Biomech Eng 125(2):169–179. https://doi.org/10.1115/1.1560144

    Article  Google Scholar 

  25. Klisch SM, Sah RL, Hoger A (2005) A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments. Biomech Model Mechanobiol 3(4):209–223. https://doi.org/10.1007/s10237-004-0060-9

    Article  Google Scholar 

  26. Kuzmin A, Luisier M, Schenk O (2013) Fast methods for computing selected elements of the green’s function in massively parallel nanoelectronic device simulations. In: Wolf F, Mohr B, Mey D (eds) Euro-Par 2013 parallel processing. Springer, Berlin, pp 533–544. https://doi.org/10.1007/978-3-642-40047-6_54

    Chapter  Google Scholar 

  27. Liu I (2014) A solid–fluid mixture theory of porous media. Int J Eng Sci 84:133–146. https://doi.org/10.1016/j.ijengsci.2014.07.002

    Article  MathSciNet  MATH  Google Scholar 

  28. Masud A (2007) A stabilized mixed finite element method for Darcy–Stokes flow. Int J Numer Methods Fluids 54(6–8):665–681. https://doi.org/10.1002/fld.1508

    Article  MathSciNet  MATH  Google Scholar 

  29. Masud A, Hughes TJR (2002) A stabilized mixed finite element method for Darcy flow. Comput Methods Appl Mech Eng 191(39):4341–4370. https://doi.org/10.1016/S0045-7825(02)00371-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen DY, Tran RT, Costanzo F, Yang J (2015) Chap 60: Tissue engineered peripheral nerve guide fabrication techniques. In: Tubbs RS, Rizk E, Shoja MM, Loukas M, Barbaro N, Spinner M (eds) Nerves and nerve injuries, vol 2. Academic Press, Boston, pp 971–992. https://doi.org/10.1016/B978-0-12-802653-3.00109-3

    Chapter  Google Scholar 

  31. Nishiguchi K, Okazawa S, Tsubokura M (2018) Multimaterial Eulerian finite element formulation for pressure-sensitive adhesives. Int J Numer Methods Eng 114(13):1368–1388. https://doi.org/10.1002/nme.5790

    Article  MathSciNet  Google Scholar 

  32. Nishiguchi K, Bale R, Okazawa S, Tsubokura M (2019) Full Eulerian deformable solid–fluid interaction scheme based on building-cube method for large-scale parallel computing. Int J Numer Methods Eng 117(2):221–248. https://doi.org/10.1002/nme.5954

    Article  MathSciNet  Google Scholar 

  33. Roy S, Singh S, Schoeppner GA (2008) Modeling of evolving damage in high temperature polymer matrix composites subjected to thermal oxidation. J Mater Sci 43(20):6651–6660. https://doi.org/10.1007/s10853-008-2691-1

    Article  Google Scholar 

  34. Salari K, Knupp P (2000) Code verification by the method of manufactured solutions. Technical report, Sandia National Labs., Albuquerque, NM (US). https://www.osti.gov/servlets/purl/759450

  35. Schenk O, Wächter A, Hagemann M (2007) Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Computa Optim Appl 36(2):321–341. https://doi.org/10.1007/s10589-006-9003-y

    Article  MathSciNet  MATH  Google Scholar 

  36. Schenk O, Bollhöfer M, Römer RA (2008) On large-scale diagonalization techniques for the anderson model of localization. SIAM Rev 50(1):91–112. https://doi.org/10.1137/070707002

    Article  MathSciNet  MATH  Google Scholar 

  37. Schiesser WE (2012) The numerical method of lines: integration of partial differential equations. Elsevier. https://www.elsevier.com/books/the-numerical-method-of-lines/schiesser/978-0-12-624130-3

  38. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2011) A full eulerian finite difference approach for solving fluid-structure coupling problems. J Comput Phys 230(3):596–627 arXiv:1009.3609

    Article  MathSciNet  Google Scholar 

  39. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–545. https://doi.org/10.1115/1.3005109

    Article  Google Scholar 

  40. Wang Y, Pan J, Han X, Sinka C, Ding L (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29(23):3393–3401. https://doi.org/10.1016/j.biomaterials.2008.04.042

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation (CMMI 1537008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Patki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patki, P., Costanzo, F. A mixture theory-based finite element formulation for the study of biodegradation of poroelastic scaffolds. Comput Mech 66, 351–371 (2020). https://doi.org/10.1007/s00466-020-01854-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01854-w

Keywords

Navigation