Skip to main content
Log in

Modeling of evolving damage in high temperature polymer matrix composites subjected to thermal oxidation

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes mechanism-based modeling of damage evolution in high temperature polymer matrix composites (HTPMC) under thermo-oxidative aging conditions. Specifically, a multi-scale model based on micro-mechanics analysis in conjunction with continuum damage mechanics (CDM) is developed to simulate the accelerated fiber–matrix debond growth in the longitudinal direction of a unidirectional HTPMC. Using this approach, one can relate the behavior of composites at the micro-level (representative volume element) to the macro-level (structural element) in a computationally tractable manner. Thermo-oxidative aging is simulated with diffusion-reaction model in which temperature, oxygen concentration, and weight loss effects are considered. For debond growth simulation, a model based on Darcy’s laws for oxygen permeation in the fiber–matrix interface is employed, that, when coupled with polymer shrinkage, provides a mechanism for permeation-controlled debond growth in HTPMC. Benchmark of model prediction with experimental observations of oxidation layer growth is presented, together with a laminate thermo-oxidative life prediction model based on CDM to demonstrate proof-of-concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Colin X, Verdu J (2005) Compos Sci Technol 65:411. doi:https://doi.org/10.1016/j.compscitech.2004.09.011

    Article  CAS  Google Scholar 

  2. Colin X, Marais C, Verdu J (2005) Compos Sci Technol 65:117. doi:https://doi.org/10.1016/j.compscitech.2004.06.009

    Article  CAS  Google Scholar 

  3. Tandon GP, Pochiraju KV, Schoeppner GA (2006) Polym Degrad Stab 91(8):1861. doi:https://doi.org/10.1016/j.polymdegradstab.2005.11.008

    Article  CAS  Google Scholar 

  4. Pochiraju KV, Tandon GP (2006) J Eng Mater Technol 128:107. doi:https://doi.org/10.1115/1.2128427

    Article  CAS  Google Scholar 

  5. Pochiraju KV, Tandon GP, Schoeppner GA (2008) Mech Time-Depend Mater 12:45. doi:https://doi.org/10.1007/s11043-007-9042-5

    Article  Google Scholar 

  6. Wang SS, Chen X (2006) J Eng Mater Technol 128:81. doi:https://doi.org/10.1115/1.2132377

    Article  CAS  Google Scholar 

  7. Talreja R (1991) Mech Mater 12:165. doi:https://doi.org/10.1016/0167-6636(91)90061-4

    Article  Google Scholar 

  8. Talreja R (2006) J Mater Sci 41:6800. doi:https://doi.org/10.1007/s10853-006-0210-9

    Article  CAS  Google Scholar 

  9. Crank J (1975) Mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  10. Roy S, Wang Y, Park S, Liechti KM (2006) ASME J Eng Mater Technol 128(1):11. doi:https://doi.org/10.1115/1.2127959

    Article  CAS  Google Scholar 

  11. Roy S, Wang Y, Park S, Xu D, Liechti KM (2007) J Mech Adv Mater Struct 14:1. doi:https://doi.org/10.1080/15376490600985227

    Article  Google Scholar 

  12. Needleman A (1987) J Appl Mech 54:525

    Article  Google Scholar 

  13. Wise J, Gillen KT, Clough RL (1997) Polymer 38:1929. doi:https://doi.org/10.1016/S0032-3861(96)00716-1

    Article  CAS  Google Scholar 

  14. Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood Limited

  15. Coleman BD, Gurtin ME (1967) J Chem Phys 47:597

    Article  CAS  Google Scholar 

  16. Smith GF (1982) Quart Appl Math 39:509

    Article  Google Scholar 

  17. ABAQUS, Version 6.5 (2004) Hibbit, Karlsson, and Sorensen Inc., Providence, Rhode Island

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Mechanics of Multifunctional Materials & Microsystems Program of the Air Force Office of Scientific Research, with Dr. Byung “Les” Lee as Program Manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Singh, S. & Schoeppner, G.A. Modeling of evolving damage in high temperature polymer matrix composites subjected to thermal oxidation. J Mater Sci 43, 6651–6660 (2008). https://doi.org/10.1007/s10853-008-2691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2691-1

Keywords

Navigation