Skip to main content
Log in

An investigation of radial basis functions for fractional derivatives and their applications

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the present study, the radial basis functions (RBF) are combined with polynomial basis functions to approximate the fractional derivatives specifically. We explore two new types of local support fields for the first time in the literature. In addition, we apply the RBF, combined with an appropriate number of polynomial basis functions featuring a new type of local support field to solve the single-term, multi-term ordinary fractional equations, time–space and two-side space fractional partial differential equations. Finally, the accuracy of the presented method is demonstrated via numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng R, Sun F, Wang J (2018) Meshless analysis of two-dimensional two-sided space-fractional wave equation based on improved moving least-squares approximation. Int J Comput Math 95:540–560

    Article  MathSciNet  Google Scholar 

  2. Cheng R, Sun F, Wei Q, Wang J (2018) Numerical treatment for solving two-dimensional space-fractional advection–dispersion equation using meshless method. Mod Phys Lett B 32:1850073

    Article  MathSciNet  Google Scholar 

  3. Dehghan M, Abbaszadeh M, Mohebbi A (2016) Analysis of a meshless method for the time fractional diffusion-wave equation. Numer Algorithm 73:445–476

    Article  MathSciNet  Google Scholar 

  4. Fan W, Liu F, Turner I (2017) A novel unstructured mesh finite element method for solving the time–space fractional wave equation on a two-dimensional irregular convex domain. Fract Calc Appl Anal 20:352–383

    Article  MathSciNet  Google Scholar 

  5. Feng L, Liu F, Turner I, Yang Q, Zhuang P (2018) Unstructured mesh finite difference/finite element method for the 2d time-space riesz fractional diffusion equation on irregular convex domains. Appl Math Model 59:441–463

    Article  MathSciNet  Google Scholar 

  6. Gu YT (2001) A local point interpolation method (LPIM) for static and dynamic analysis of thin beams. Comput Methods Appl Mech Eng 190:5515–5528

    Article  Google Scholar 

  7. Gu YT, Liu GR (2001) A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids. Comput Methods Appl Mech Eng 190:4405–4419

    Article  Google Scholar 

  8. Gu YT, Liu GR (2001) A meshless local Petrov–Galerkin (MLPG) method for free and forced vibration analyses for solids. Comput Mech 27:188–198

    Article  Google Scholar 

  9. Gu YT, Liu GR (2005) Meshfree methods and their comparisons. Int J Comput Methods 2:477–515

    Article  Google Scholar 

  10. Gu YT, Zhuang P (2012) Anomalous sub-diffusion equations by the meshless collocation method. Aust J Mech Eng 10:1–8

    Article  Google Scholar 

  11. Gu YT, Zhuang P, Liu F (2010) An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput Model Eng Sci 56:303–334

    MathSciNet  MATH  Google Scholar 

  12. Li C, Zeng F (2018) The finite difference methods for fractional ordinary differential equations. Numer Funct Anal Optim 34:149–179

    Article  MathSciNet  Google Scholar 

  13. Li X, Chuanju X (2010) Existence and uniqueness of the solution of the space–time fractional diffusion euation and a spectral method approximation. Commun Comput Phys 8:1016–1051

    Article  MathSciNet  Google Scholar 

  14. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  15. Liu GR, Gu YT (2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Comput Mech 26:534–546

    MATH  Google Scholar 

  16. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50:937–951

    Article  Google Scholar 

  17. Liu GR, Gu YT (2007) Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation. Comput Mech 26:166–173

    Article  Google Scholar 

  18. Liu GR, Zhang GY, Gu YT, Wang Y (2001) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430

    Article  MathSciNet  Google Scholar 

  19. Liu L, Zheng LC, liu F, Zhang XX (2016) An improved heat conduction model with riesz fractional Cattaneo–Christov flux. Int J Heat Mass Transf 103:1191–1197

    Article  Google Scholar 

  20. Liu Q, Gu YT, Zhuang P, Liu F, Nie YF (2011) An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech 48:1–12

    Article  MathSciNet  Google Scholar 

  21. Liu Q, Liu F, Gu YT, Zhuang P, Chen J, Turner I (2015) A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl Math Comput 256:930–938

    MathSciNet  MATH  Google Scholar 

  22. Liu Y, Zudeng Y, Li H, Liu F, Wang J (2018) Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int J Heat Mass Transf 120:1132–1145

    Article  Google Scholar 

  23. Lian Y, Ying Y, Tang S, Lin S, Wagner GJ, Liu WK (2016) A Petrov–Galerkin finite element method for the fractional advection–diffusion equation. Comput Methods Appl Mech Eng 309:388–410

    Article  MathSciNet  Google Scholar 

  24. Luan S, Lian Y, Ying Y, Tang S, Wagner GJ, Liu WK (2017) An enriched finite element method to fractional advection–diffusion equation. Comput Mech 60:181–201

    Article  MathSciNet  Google Scholar 

  25. Podlubny I (1999) Fractional differential equations. Academic Press, Cambridge

    MATH  Google Scholar 

  26. Qin S, Liu F, Turner I (2018) A 2d multi-term time and space fractional Bloch–Torrey model based on bilinear rectangular finite elements. Commun Nonlinear Sci Numer Simul 56:270–286

    Article  MathSciNet  Google Scholar 

  27. Shen J, Tang T, Wang L-L (2011) Spectral methods, algorithms, analysis and applications. Springer, Berlin

    MATH  Google Scholar 

  28. Tang S, Ying Y, Lian Y, Lin S, Yang Y, Wagner GJ, Liu WK (2016) Differential operator multiplication method for fractional differential equations. Comput Mech 58:879–888

    Article  MathSciNet  Google Scholar 

  29. Uddin M, Kamran K, Usman M, Ali A (2018) On the Laplace-transformed-based local meshless method for fractional-order diffusion equation. Numer Algorithm 19:221–225

    MathSciNet  Google Scholar 

  30. Yuan ZB, Nie YF, Liu F, Turner I, Gu YT (2016) An advanced numerical modeling for riesz space fractional advection–dispersion equations by a meshfree approach. Appl Math Model 40:7816–7829

    Article  MathSciNet  Google Scholar 

  31. Ying Y, Lian Y, Tang S, Liu WK (2016) Enriched reproducing kernel particle method for fractional advection–diffusion equation. Acta Mech Sin 34:515–527

    Article  MathSciNet  Google Scholar 

  32. Ying Y, Lian Y, Tang S, Liu WK (2017) High-order central difference scheme for Caputo fractional derivative. Comput Methods Appl Mech Eng 317:42–54

    Article  MathSciNet  Google Scholar 

  33. Zeng F, Liu F, Li C, Burrage K, Turner IW, Anh VV (2014) A Crank–Nicolson ADI spectral method for a two-dimensional riesz space fractional nonlinear reaction–diffusion equation. SIAM J Numer Anal 120:2599–2622

    Article  MathSciNet  Google Scholar 

  34. Zhang H, Liu F, Chen S, Anh V, Chen J (2018) Fast numerical simulation of a new time–space fractional option pricing model governing European call option. Appl Math Comput 339:186–198

    Article  MathSciNet  Google Scholar 

  35. Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A Crank–Nicolson adi spectral method for a two-dimensional riesz space distributed-order advection–diffusion equation. Comput Math Appl 76:2460–2476

    Article  MathSciNet  Google Scholar 

  36. Zheng M, Liu F, Anh VV, Turner IW (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 120:4970–4985

    Article  MathSciNet  Google Scholar 

  37. Zheng M, Liu F, Turner IW, Anh VV (2015) A novel high order space–time spectral method for the time fractional Fokker–Planck equation. SIAM J Sci Comput 120:A701–A724

    Article  MathSciNet  Google Scholar 

  38. Zhuang P, Gu YT, Liu F, Turner I, Yarlagadda PKDV (2012) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88:1346–1362

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The project was partially supported by the Fundamental Research Funds for the Central Universities (Nos. 20720180003 and 20720160002). The authors also wish to acknowledge that this research was partially supported by the Australian Research Council via the Discovery Projects (Nos. DP180103858 and DP190101889) and the National Natural Science Foundation of China (Nos. 11772046, 11701467 and 11771364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinghui Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhuang, P., Liu, F. et al. An investigation of radial basis functions for fractional derivatives and their applications. Comput Mech 65, 475–486 (2020). https://doi.org/10.1007/s00466-019-01779-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01779-z

Keywords

Navigation