Skip to main content
Log in

The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric–piezomagnetic bi-layered structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic fracture problems of interfacial cracks in piezoelectric–piezomagnetic (PE–PM) bi-layered composite structures under in-plane coupled electro-magneto-mechanical impact loadings by means of the extended finite element method (X-FEM). Considering the magnetoelectrically impermeable crack-face conditions and multi-filed coupled properties in the PE–PM composites, novel and more suitable crack-tip enrichment functions for interfacial cracks in PE–PM bi-layered composite structures are newly derived and implemented in the X-FEM, where the Newmark method is applied and proved to be effective. As the fracture parameter, the J-integral is evaluated using the domain-form of the path-independent contour integral. For dynamic analysis of interfacial cracks in infinite PE–PM bi-layered composite structures, absorbing layers based on the Sarma absorbing boundary conditions are adopted and applied to avoid the unphysical wave reflections at the artificially introduced boundaries in the X-FEM meshes. In the numerical examples, the validity of the proposed scheme is verified by comparing the numerical solutions provided by the X-FEM with either analytical results obtained by solving the corresponding singular integral equations or possible stationary values obtained by introducing the corresponding absorbing layers. Finally, by the numerical examples, the effects of the applied dynamic loadings, time variable and structural geometries on the dynamic J-integral are analyzed and discussed in detail. Some important conclusions are drawn, which should be helpful for the design and applications of the PE–PM layered composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li YD, Zhao H, Zhang N (2013) Mixed mode fracture of a piezoelectric–piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int J Solids Struct 50(22–23):3610–3617

    Article  Google Scholar 

  2. Nan CW, Bichurin MI, Dong SX et al (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101

    Article  Google Scholar 

  3. Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48(9):1311–1317

    Article  MATH  Google Scholar 

  4. Jin J, Ma P, Feng WJ (2013) Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers. Eng Mech 30(6):327–333

    Google Scholar 

  5. Wan YP, Yue YP, Zhong Z (2012) Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng Fract Mech 84:132–145

    Article  Google Scholar 

  6. Tian W, Zhong Z, Li Y (2016) Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater Struct 25(1):015029

    Article  Google Scholar 

  7. Yu T, Bui TQ, Liu P et al (2015) Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int J Solids Struct 67–68:205–218

    Article  Google Scholar 

  8. Feng WJ, Li YS, Xu ZH (2009) Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int J Solids Struct 46(18):3346–3356

    Article  MATH  Google Scholar 

  9. Wang BL, Han JC, Du SY (2010) Transient fracture of a layered magnetoelectroelastic medium. Mech Mater 42(3):354–364

    Article  Google Scholar 

  10. Ma P, Su RKL, Feng WJ (2018) Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int J Eng Sci 129:21–33

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang BL, Mai YW (2007) Self-consistent analysis of coupled magnetoelectroelastic fracture theoretical investigation and finite element verification. Comput Methods Appl Mech Eng 196(13–16):2044–2054

    Article  MathSciNet  MATH  Google Scholar 

  12. Lei J, Zhang Ch, Bui TQ (2015) Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM. Eur J Mech A Solids 49:146–157

    Article  MathSciNet  MATH  Google Scholar 

  13. Sladek J, Sladek V, Solek P et al (2008) Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput Mech 42(5):697–714

    Article  MATH  Google Scholar 

  14. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  Google Scholar 

  15. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu P, Yu T, Bui TQ et al (2013) Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput Mater Sci 69(1):542–558

    Article  Google Scholar 

  17. Béchet E, Scherzer M, Kuna M (2009) Application of the X-FEM to the fracture of piezoelectric materials. Int J Numer Methods Eng 77(11):1535–1565

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma P, Su RKL, Feng WJ et al (2015) The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. Int J Numer Methods Eng 103(2):94–113

    Article  MathSciNet  MATH  Google Scholar 

  19. Rojas-Díaz R, Sukumar N, Sáez A et al (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng 88(12):1238–1259

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma P, Su RKL, Feng WJ (2016) Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magnetoelectroelastic bimaterials. Eng Fract Mech 161:21–39

    Article  Google Scholar 

  21. Bui TQ, Zhang Ch (2012) Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Comput Mater Sci 62:243–257

    Article  Google Scholar 

  22. Bui TQ, Zhang Ch (2013) Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM. Finite Elem Anal Des 69(1):19–36

    Article  Google Scholar 

  23. Liu P, Yu T, Bui TQ et al (2014) Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int J Solids Struct 51(11–12):2167–2182

    Article  Google Scholar 

  24. Bhargava RR, Sharma K (2011) A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Comput Mater Sci 50(6):1834–1845

    Article  Google Scholar 

  25. Bhargava RR, Sharma K (2012) Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectoelastic specimen. Comput Mater Sci 60:75–98

    Article  Google Scholar 

  26. Sukumar N, Huang ZY, Prévost JH et al (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075–1102

    Article  MATH  Google Scholar 

  27. Suo Z, Kuo C, Barnett D et al (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4):739–765

    Article  MathSciNet  MATH  Google Scholar 

  28. Ou ZC, Wu X (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct 40(26):7499–7511

    Article  MATH  Google Scholar 

  29. Li R, Kardomateas GA (2007) The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. J Appl Mech Trans ASME 74(4):614–627

    Article  Google Scholar 

  30. Sarma GS, Mallick K, Gadhinglajkar VR (1998) Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics 63(3):1006–1016

    Article  Google Scholar 

  31. Semblat JF, Gandomzadeh A, Lenti L (2010) A simple numerical absorbing layer method in elastodynamics. C R Mec 338(1):24–32

    Article  MATH  Google Scholar 

  32. Smelser RE, Gurtin ME (1977) On the J-integral for bi-material bodies. Int J Fract 13(3):382–384

    Google Scholar 

  33. Chessa J, Wang H, Belytschko T et al (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038

    Article  MATH  Google Scholar 

  34. Belytschko T, Chen H, Xu J et al (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  35. Menk A, Stéphane PA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632

    Article  MathSciNet  MATH  Google Scholar 

  36. Moës N, Cloirec M, Cartraud P et al (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177

    Article  MATH  Google Scholar 

  37. Herrmann KP, Loboda VV, Khodanen TV (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch Appl Mech 80(6):651–670

    Article  MATH  Google Scholar 

  38. Rao SG, Xia YM (1995) Dynamic elastic-plastic fem analysis of a fracture specimen under plane stress state. Eng Fract Mech 52(4):755–763

    Article  Google Scholar 

  39. Laborde P, Pommier J, Renard Y et al (2010) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381

    Article  MATH  Google Scholar 

  40. Hattori G, Rojas-Díaz R, Sáez A et al (2012) New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50(5):591–601

    Article  MathSciNet  MATH  Google Scholar 

  41. Idesman AV (2007) Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes. Comput Methods Appl Mech Eng 196(9):1787–1815

    Article  MATH  Google Scholar 

  42. Huang CY (1997) Recent progress in multiblock hybrid structured and unstructured mesh generation. Comput Methods Appl Mech Eng 150(1–4):1–24

    Article  MATH  Google Scholar 

  43. Asadpoure A, Mohammadi S (2010) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150–2172

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11072160, 11572358 and 11272222), the General Research Fund of Hong Kong (HKU 17223916) and the German Research Foundation (DFG, Project No. ZH 15/14-1). Zhen Yan is also grateful to the financial support by the China Scholarship Council (CSC) for the Joint PhD Scholarship at the Chair of Structural Mechanics, University of Siegen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. J. Feng or Ch. Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Crack-tip fields in PE–PM bimaterials

Appendix: Crack-tip fields in PE–PM bimaterials

According to the Stroh’s formalism, the general solutions for the 2D problem of the linear magnetoelectroelasticity can be expressed as [20, 27]

$$ {\mathbf{u}}^{\left( m \right)} = \left[ {\begin{array}{*{20}c} {u_{1}^{\left( m \right)} } & {u_{3}^{\left( m \right)} } & {\varphi^{\left( m \right)} } & {\phi^{\left( m \right)} } \\ \end{array} } \right]^{\text{T}} = {\mathbf{A}}^{\left( m \right)} {\mathbf{g}}^{\left( m \right)} \left( {z_{s} } \right) + \overline{{{\mathbf{A}}^{\left( m \right)} {\mathbf{g}}^{\left( m \right)} \left( {z_{s} } \right)}} , $$
(A.1a)
$$ {\mathbf{t}}^{\left( m \right)} = \left[ {\begin{array}{*{20}c} {\sigma_{31}^{\left( m \right)} } & {\sigma_{33}^{\left( m \right)} } & {D_{3}^{\left( m \right)} } & {B_{3}^{\left( m \right)} } \\ \end{array} } \right]^{\text{T}} = {\mathbf{B}}^{\left( m \right)} {\mathbf{g}}^{\prime \left( m \right)} \left( {z_{s} } \right) + \overline{{{\mathbf{A}}^{\left( m \right)} {\mathbf{g}}^{\prime \left( m \right)} \left( {z_{s} } \right)}} , $$
(A.1b)

where \( {\mathbf{g}}\left( {z_{s} } \right) \) are the unknown complex functions, \( {\mathbf{g^{\prime}}}\left( {z_{s} } \right) \) are the derivative of \( {\mathbf{g}}\left( {z_{s} } \right) \) with respect to \( z_{s} = x_{1} + p_{s} x_{3} \, \left( {s = 1,\;2,\;3,\;4} \right) \) with \( p_{s} \) being the Stroh’s eigenvalues with positive imaginary parts, an over bar denotes the complex conjugate, and \( {\mathbf{A}} = \left[ {\begin{array}{*{20}c} {{\mathbf{a}}_{1} } & {{\mathbf{a}}_{2} } & {{\mathbf{a}}_{3} } & {{\mathbf{a}}_{4} } \\ \end{array} } \right] \) is a complex matrix with \( {\mathbf{a}}_{s} \) being the Stroh’s eigenvectors. The Stroh’s eigenvalues and eigenvectors \( p_{s} \) and \( {\mathbf{a}}_{s} \) are determined by the eigen-equations \( \left[ {{\mathbf{Q}} + p\left( {{\mathbf{R}} + {\mathbf{R}}^{\text{T}} } \right) + p^{2} {\mathbf{T}}} \right]{\mathbf{a}} = 0 \),where

$$ {\mathbf{Q}}^{\left( m \right)} = \left[ {\begin{array}{*{20}c} {c_{11}^{\left( m \right)} } & 0 & 0 & 0 \\ 0 & {c_{44}^{\left( m \right)} } & {\delta_{1m} e_{15} } & {\delta_{2m} h_{15} } \\ 0 & {\delta_{1m} e_{15} } & { - \,\alpha_{11}^{\left( m \right)} } & 0 \\ 0 & {\delta_{2m} h_{15} } & 0 & { - \,\mu_{11}^{\left( m \right)} } \\ \end{array} } \right], $$
(A.2a)
$$ \, {\mathbf{R}}^{\left( m \right)} = \left[ {\begin{array}{*{20}c} 0 & {c_{13}^{\left( m \right)} } & {\delta_{1m} e_{31} } & {\delta_{2m} h_{31} } \\ {c_{44}^{\left( m \right)} } & 0 & 0 & 0 \\ {\delta_{1m} e_{15} } & 0 & 0 & 0 \\ {\delta_{2m} h_{15} } & 0 & 0 & 0 \\ \end{array} } \right], $$
(A.2b)
$$ {\mathbf{T}}^{\left( m \right)} = \left[ {\begin{array}{*{20}c} {c_{44}^{\left( m \right)} } & 0 & 0 & 0 \\ 0 & {c_{33}^{\left( m \right)} } & {\delta_{1m} e_{33} } & {\delta_{2m} h_{33} } \\ 0 & {\delta_{1m} e_{33} } & { - \,\alpha_{33}^{\left( m \right)} } & 0 \\ 0 & {\delta_{2m} h_{33} } & 0 & { - \,\mu_{33}^{\left( m \right)} } \\ \end{array} } \right], $$
(A.2c)

and \( {\mathbf{B}} = {\mathbf{R}}^{\text{T}} {\mathbf{A}} + {\mathbf{TAP}}, \, {\mathbf{P}} = {\text{diag}}\left[ {p_{1} , \, p_{2} , \, p_{3} , \, p_{4} } \right] \).

With the assumption of the traction-free and magnetoelectrically impermeable crack-face boundary conditions, the continuity and boundary conditions at the interface are given by [20]

$$ {\mathbf{u}}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = {\mathbf{u}}^{\left( 2 \right)} \left( {x_{1} ,0} \right), \, {\mathbf{t}}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = {\mathbf{t}}^{\left( 2 \right)} \left( {x_{1} ,0} \right), \, x_{1} \notin \Gamma_{c} , $$
(A.3a)
$$ {\mathbf{t}}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = {\mathbf{t}}^{\left( 2 \right)} \left( {x_{1} ,0} \right) = 0, \, x_{1} \in \Gamma_{c} . $$
(A.3b)

According to Ref. [28], the unknown complex functions \( {\mathbf{g}}^{\left( m \right)} \) can be taken as \( {\mathbf{g}}^{\left( m \right)} \left( {z_{s}^{\left( m \right)} } \right) = {{\left\langle {\left( {z_{s}^{\left( m \right)} } \right)^{1 + \delta } } \right\rangle {\mathbf{q}}^{\left( m \right)} } \mathord{\left/ {\vphantom {{\left\langle {\left( {z_{s}^{\left( m \right)} } \right)^{1 + \delta } } \right\rangle {\mathbf{q}}^{\left( m \right)} } {\left( {1 + \delta } \right)}}} \right. \kern-0pt} {\left( {1 + \delta } \right)}} \), where \( \langle \rangle \) indicates the diagonal matrix with each component varying with \( s \). Using the expression for \( {\mathbf{g}}^{\left( m \right)} \) and \( z_{s}^{\left( m \right)} = r\left( {\cos \theta + p_{s}^{\left( m \right)} \sin \theta } \right) \), Eq. (A.1) can be rewritten as

$$ \begin{aligned} {\mathbf{u}}^{\left( m \right)} &= r^{{\left( {1 + \delta }\right)}} \left[ {\mathbf{A}}^{\left( m \right)} \left\langle{\left( {\cos \theta + p_{s}^{\left( m \right)} \sin \theta }\right)^{1 + \delta } } \right\rangle {\mathbf{q}}^{\left( m\right)} \right.\\ &\quad\left.+\, {\bar{\mathbf{A}}}^{\left( m \right)} \left\langle{\left( {\cos \theta + \bar{p}_{s}^{\left( m \right)} \sin \theta }\right)^{1 + \delta } } \right\rangle {\bar{\mathbf{q}}}^{\left( m\right)} \right] \mathord{\left/ {\vphantom {{r^{{\left( {1 +\delta } \right)}} \left[ {{\mathbf{A}}^{\left( m \right)}\left\langle {\left( {\cos \theta + p_{s}^{\left( m \right)} \sin\theta } \right)^{1 + \delta } } \right\rangle {\mathbf{q}}^{\left(m \right)} + {\bar{\mathbf{A}}}^{\left( m \right)} \left\langle{\left( {\cos \theta + \bar{p}_{s}^{\left( m \right)} \sin \theta }\right)^{1 + \delta } } \right\rangle {\bar{\mathbf{q}}}^{\left( m\right)} } \right]} {\left( {1 + \delta } \right)}}} \right.\kern-0pt} {\left( {1 + \delta } \right)},\end{aligned} $$
(A.4a)
$$\begin{aligned} {\mathbf{t}}^{\left( m \right)} &= r^{\delta } \left[ {\mathbf{B}}^{\left( m \right)} \left\langle {\left( {\cos \theta + p_{s}^{\left( m \right)} \sin \theta } \right)^{\delta } } \right\rangle {\mathbf{q}}^{\left( m \right)} \right. \\ &\left.\quad+ \,{\bar{\mathbf{B}}}^{\left( m \right)} \left\langle {\left( {\cos \theta + \bar{p}_{s}^{\left( m \right)} \sin \theta } \right)^{\delta } } \right\rangle {\bar{\mathbf{q}}}^{\left( m \right)} \right],\end{aligned} $$
(A.4b)

where \( \delta \) is the singularity parameter to represent the singularity of the generalized stresses at the crack-tip. Substituting Eq. (A.4) into Eq. (A.3) and considering the following relation

$$ z_{s} = \left\{ {\begin{array}{*{20}l} {r{\text{e}}^{{ \pm {\text{i}}\pi }} ,} \hfill & {\theta = \pm \pi ,} \hfill \\ {r,} \hfill & {\theta = 0,} \hfill \\ \end{array} } \right. $$
(A.5)

we obtain [28]

$$ \left[ {{\mathbf{H}} + {\text{e}}^{{2\pi \delta {\text{i}}}} {\bar{\mathbf{H}}}} \right]{\mathbf{B}}^{\left( 1 \right)} {\mathbf{q}}^{\left( 1 \right)} = 0, $$
(A.6)

in which \( {\mathbf{H}} = {\mathbf{Y}}^{\left( 1 \right)} + {\bar{\mathbf{Y}}}^{\left( 2 \right)} = {\mathbf{D}} + {\text{i}}{\mathbf{W}} \), and \( {\mathbf{Y}}^{\left( m \right)} = {\text{i}}{\mathbf{A}}^{\left( m \right)} \left( {{\mathbf{B}}^{\left( m \right)} } \right)^{ - 1} \).

In order to ensure a nontrivial solution for Eq. (A.6), \( \left| {{\mathbf{H}} + {\text{e}}^{{2\pi \delta {\text{i}}}} {\bar{\mathbf{H}}}} \right| = 0 \) should be satisfied. By assuming \( \delta = - \,1/2 + {\text{i}}\varepsilon \), the following equation can be obtained [27,28,29]

$$ \left| {{\bar{\mathbf{H}}} - e^{2\pi \varepsilon } {\mathbf{H}}} \right| = \left| {{\mathbf{W}} + {\text{i}}\beta {\mathbf{D}}} \right| = 0, $$
(A.7)

where \( \left| {\varvec{\Delta}} \right| \) is the determinant of matrix \( {\varvec{\Delta}} \), \( \varepsilon \) is the oscillating index and \( \beta = {{\left( {1 - {\text{e}}^{2\pi \varepsilon } } \right)} \mathord{\left/ {\vphantom {{\left( {1 - {\text{e}}^{2\pi \varepsilon } } \right)} {\left( {1 + {\text{e}}^{2\pi \varepsilon } } \right)}}} \right. \kern-0pt} {\left( {1 + {\text{e}}^{2\pi \varepsilon } } \right)}} \) or \( \varepsilon = {{ - \left( {\tanh^{ - 1} \beta } \right)} \mathord{\left/ {\vphantom {{ - \left( {\tanh^{ - 1} \beta } \right)} \pi }} \right. \kern-0pt} \pi } \).

Since \( {\mathbf{H}} \) is a Hermitian matrix, if \( \beta \) and \( \bar{\beta } \) are the roots of Eq. (A.7), then \( - \beta \) and \( - \bar{\beta } \) are also the roots of Eq. (A.7). Therefore, Eq. (A.7) should have the form

$$ \left( {{\text{i}}\beta } \right)^{4} + 2c_{2} \left( {{\text{i}}\beta } \right)^{2} + c_{4} = 0, $$
(A.8)

where \( c_{2} = - \,\frac{1}{4}{\text{tr}}\left( {{\mathbf{D}}^{ - 1} {\mathbf{W}}} \right)^{2} ,\;c_{4} = \left| {{\mathbf{D}}^{ - 1} {\mathbf{W}}} \right| \). Finally, the roots of Eq. (A.8) can be expressed as follows

$$ \beta_{1,2} = \pm \sqrt {c_{2} + \sqrt {\left( {c_{2} } \right)^{2} - c_{4} } } , \, \beta_{3,4} = \pm \sqrt {c_{2} - \sqrt {\left( {c_{2} } \right)^{2} - c_{4} } } . $$
(A.9)

In order to analyze the crack-tip singularity described by \( \delta \), it is required to investigate the values of \( \beta_{s} \). With a similar analysis as in the previous studies [27,28,29], we obtain for transversely isotropic PE–PM bimaterials that \( \beta_{1} = - \,\beta_{2} \) are two real numbers and \( \beta_{3} = \beta_{4} = 0 \). Thus, the crack-tip singularity in this paper can be expressed as \( \delta_{1,2} = - 1/2 \pm {\text{i}}\varepsilon_{1} \) and \( \delta_{3,4} = - \,1/2 \), where \( \varepsilon_{1} = {{ - \,\left( {\tanh^{ - 1} \beta_{1} } \right)} \mathord{\left/ {\vphantom {{ - \,\left( {\tanh^{ - 1} \beta_{1} } \right)} \pi }} \right. \kern-0pt} \pi } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Feng, W.J., Zhang, C. et al. The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric–piezomagnetic bi-layered structures. Comput Mech 64, 1303–1319 (2019). https://doi.org/10.1007/s00466-019-01709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01709-z

Keywords

Navigation