Skip to main content
Log in

Effects of the volume fraction of piezoelectric particles in the magneto-electro-elastic interfacial region on the fracture behavior of a laminate multiferroic plate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Magneto-electro-elastic (MEE) interfacial regions may be formed in multiferroic composites consisting of alternate piezoelectric (PE) and piezomagnetic layers during the hot-pressing process. The existence of such an MEE region may have effects on the mechanical behavior of the composite, which is an interesting problem deserving studying. The present article proposes an interfacial fracture model for a multiferroic composite that contains an MEE interfacial region. The methods of Fourier integral transform and Green’s functions are employed to convert the crack problem with mixed boundary conditions into Cauchy singular integral equations, which are further numerically solved by the Lobatto–Chebyshev collocation method to determine the stress intensity factors. In the numerical computation, the PE volume fraction is chosen as the only characteristic parameter to calculate the material properties of the MEE interfacial region based on the linear rule of mixture. Finally, parametric studies are conducted to reveal the effects of the volume fraction on the fracture behavior, and two main conclusions are drawn: (a) The effects of the PE volume fraction reflect the effects of the material-property jumps across the interfaces, and (b) the interfacial fracture behavior is mainly dominated by the competition between the property jumps across the interfaces and the thickness of the interfacial region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  2. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  3. Zheng, H., Wang, J., Lofland, S.E., et al.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    Article  Google Scholar 

  4. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  5. Wang, Y., Weng, G.J.L.: Magnetoelectric coupling and overall properties of multiferroic composites with 0–0 and 1–1 connectivity. J. Appl. Phys. 118, 174102 (2015)

    Article  Google Scholar 

  6. Zhao, Y.F., Zhao, M.H., Pan, E.: Displacement discontinuity analysis of a nonlinear interfacial crack in three-dimensional transversely isotropic magneto-electro-elastic bi-materials. Eng. Anal. Bound. Elem. 61, 254–264 (2015)

    Article  MathSciNet  Google Scholar 

  7. Viun, O., Lapusta, Y., Loboda, V.: Pre-fracture zones modelling for a limited permeable crack in an interlayer between magneto-electro-elastic materials. Appl. Math. Mod. 39, 6669–6684 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hu, K.Q., Chen, Z.T., Fu, J.W.: Dynamic analysis of an interface crack between magnetoelectroelastic and functionally graded elastic layers under anti-plane mechanical and in-plane electro-magnetic loadings. Compos. Struct. 107, 142–148 (2014)

    Article  Google Scholar 

  9. Liu, H.T., Wu, W.J., Zhou, Z.G.: Basic solution to four three-dimensional rectangular limited-permeable cracks in transversely isotropic magneto-electro-elastic material. Appl. Math. Comput. 225, 117–141 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Shi, P.P., Sun, S., Li, X.: The cyclically symmetric distributed cracks on the arc-shaped interface between a functionally graded magneto-electro-elastic layer and an orthotropic elastic substrate under static anti-plane shear load. Eng. Fract. Mech. 105, 238–249 (2013)

    Article  Google Scholar 

  11. Bhargava, R.R., Gupta, S.: Mathematical model for crack arrest of a transversely cracked piezoelectromagnetic strip - Part I. Appl. Math. Mod. 36, 3502–3512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rojas-Diaz, R., Garcia-Sanchez, F., Saez, A., Rodriguez-Mayorga, E., Zhang, C.: Fracture analysis of plane piezoelectric/piezomagnetic multiphase composites under transient loading. Comput. Meth. Appl. Mech. Eng. 200, 2931–2942 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y.D., Lee, K.Y.: Collinear unequal crack series in magnetoelectroelastic materials: mode I case solved via new real fundamental solutions. Eng. Fract. Mech. 77, 2772–2790 (2010)

    Article  Google Scholar 

  14. Li, Y.D., Zhou, K., Xiong, T.: Fracture analysis on a multiferroic cylindrical shell: effects of coupled interphase imperfections. J. Intell. Mater. Syst. Struct. 27, 195–207 (2016)

    Article  Google Scholar 

  15. Li, Y.D., Xiong, T., Dong, L.H.: Interfacial imperfection coupling model with application to the in-plane fracture problem of a multiferroic composite. Int. J. Solids Struct. 54, 31–41 (2015)

    Article  Google Scholar 

  16. Li, Y.D., Xiong, T., Dong, L.H.: A new interfacial imperfection coupling model (IICM) and its effect on the facture behavior of a layered multiferroic composite: anti-plane case. Eur. J. Mech. A Sol. 52, 26–36 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, Y.D., Xiong, T., Cai, Q.G.: Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder. Acta Mech. 226, 1183–1199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wan, Y.P., Yue, Y.P., Zhong, Z.: Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng. Fract. Mech. 84, 132–145 (2012)

    Article  Google Scholar 

  19. Wang, B.L., Han, J.C.: Effect of finite cracking on the magneto-electric coupling properties of magneto-electro-elastic composite laminates. J. Intell. Mater. Syst. Struct. 21, 1669–1679 (2010)

    Article  Google Scholar 

  20. Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  21. Weng, G.J.: The theoretical connection between Mori-Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Su, Y., Li, J., Weng, G.J.: A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites. J. Appl. Phys. 117, 164106 (2015)

    Article  Google Scholar 

  23. Nguyen, T.T., Kim, N.I., Lee, J.: Analysis of thin-walled open-section beams with functionally graded materials. Comput. Struct. 138, 75–83 (2016)

    Article  Google Scholar 

  24. Rafiee, M., He, X.Q., Liew, K.M.: Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates. Smart Mater. Struct. 23, 065001 (2014)

    Article  Google Scholar 

  25. Wu, C.P., Chen, S.J., Chiu, K.H.: Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37, 54–60 (2010)

    Article  MATH  Google Scholar 

  26. Hu, K.Q., Chen, Z.T.: Mode-I crack in a magnetoelectroelastic layer sandwiched by two elastic half-planes. Eng. Fract. Mech. 134, 79–94 (2015)

    Article  Google Scholar 

  27. Zhou, Y.T., Kim, T.W.: Dynamic contact modeling of anisotropic magneto-electro-elastic materials with volume fraction changes. Comput. Struct. 131, 1099–1110 (2015)

    Article  Google Scholar 

  28. Chen, W.Q., Pan, E., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58, 1524–1551 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sih, G.C., Chen, E.P.: Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theor. Appl. Fract. Mech. 40, 1–21 (2003)

    Article  Google Scholar 

  30. Theocaris, P.S., Ioakimidis, N.I.: Numerical integral methods for solution of singular integral equations. Quart. Appl. Math. 35, 173–183 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y.D., Lee, K.Y.: Effects of magneto-electric loadings and piezomagnetic/piezoelectric stiffening on multiferroic interface fracture. Eng. Fract. Mech. 77, 856–866 (2010)

    Article  Google Scholar 

  32. Wang, X., Pan, E.: Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Phys. Rev. B 76, 214107 (2007)

    Article  Google Scholar 

  33. Li, Y.D., Guan, Y., Shao, Z.Z.: Multiple parallel cracks in a magnetoelectroelastic strip under in-plane magnetic/electric field and clamping-induced antiplane pre-deformation. Acta Mech. 227, 1927–1940 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Li, YD. & Liu, SL. Effects of the volume fraction of piezoelectric particles in the magneto-electro-elastic interfacial region on the fracture behavior of a laminate multiferroic plate. Acta Mech 228, 1229–1248 (2017). https://doi.org/10.1007/s00707-016-1763-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1763-6

Navigation