Skip to main content
Log in

High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we present a high-order mortar-based contact element for the solution of two and three-dimensional frictional contact problems, considering small and large deformations. The Neo-Hookean isotropic compressible hyperelastic material model is considered. The mapping of curved surfaces of elements is performed with Non-Uniform Rational B-Splines. The behavior of the element in small and large deformations is verified by comparing it with solutions available in the literature, presenting studies of accuracy and processing time exhibited by the contact elements considering the h- and p-refinements. The comparative results show that the high-order interpolation is a strategy which has a better performance for the contact problems analysed, while improving solution accuracy of the contact stresses and forces with a lower processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Buffa A, Sangalli G, Vazquez R (2010) Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng 199:1143–1152

    Article  MathSciNet  MATH  Google Scholar 

  2. Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

  3. Bathe KJ (2008) On finite element methods for nonlinear dynamic response. In: Seventh conference on structural dynamics

  4. Bathe KJ, El-Abbasi N (2001) Stability and path test performance of contact discretizations and a new solution algorithm. Comput Struct 79:1473–1486

    Article  Google Scholar 

  5. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150

    Article  MATH  Google Scholar 

  6. Bazilevs Y, Gohean J, Hughes TJR, Moser R, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  7. Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28:263–271

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardi C, Debit N, Maday Y (1990) Coupling finite element and spectral methods: first results. Math Comput 54:21–39

    Article  MathSciNet  MATH  Google Scholar 

  9. Bittencourt ML (2014) Computational solid mechanics: variational formulation and high order approximation. CRC Press, Boca Raton

    Google Scholar 

  10. Corbett CJ, Sauer RA (2014) Nurbs-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75

    Article  MathSciNet  MATH  Google Scholar 

  11. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, New York

    Book  MATH  Google Scholar 

  13. Crisfield MA (2000) Non-linear finite element analysis of solids and structures, vol 1, 1st edn. Wiley, Hoboken

    Google Scholar 

  14. Crisfield MA (2000) Non-linear finite element analysis of solids and structures, vol 2, 1st edn. Wiley, Hoboken

    Google Scholar 

  15. Curnier A, Wriggers P, Panagiotopoulos P (1999) Unilateral contact: mechanical modelling. New developments in contact problems. Springer, Berlin, pp 1–54

    Google Scholar 

  16. David S (2011) The computer graphics manual, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  17. Dias APC (2017) Numerical simulation of structural contact problems with high-order mortar-based element. PhD thesis, Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas

  18. Dias APC, Proenca SPB, Bittencourt ML (2018) Advances in computational coupling and contact mechanics: chapter 2-standard and generalized high-order mortar-based finite elements in computational contact mechanics, vol 1, 1st edn. World Scientific (EUROPE), London

    Google Scholar 

  19. Dias APC, Serpa AL, Bittencourt ML (2015) High-order mortar-based element applied to nonlinear analysis of structural contact mechanics. Comput Methods Appl Mech Eng 294:19–55

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong S, Yosibashi Z (2009) A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput Struct 87:59–72

    Article  Google Scholar 

  21. Duster A, Rank E (2001) The \(p\)-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput Methods Appl Mech Eng 190:1925–1935

    Article  MATH  Google Scholar 

  22. Farah P, Popp A, Wall WA (2015) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55:209–228

    Article  MathSciNet  MATH  Google Scholar 

  23. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036

    Article  MathSciNet  MATH  Google Scholar 

  24. Franke D, Duster A, Nubel V, Rank E (2010) A comparison of the \(h\)-, \(p\)-, \(hp\)-, and \(rp\)-version of the FEM for the solution of the 2D hertzian contact problem. Comput Mech 45:513–522

    Article  MATH  Google Scholar 

  25. Heisserer U, Hartmann S, Duester A, Bier W, Yosibash Z, Rank E (2008) \(p\)-FEM for finite deformation powder compaction. Comput Methods Appl Mech Eng 197:727–740

    Article  MathSciNet  MATH  Google Scholar 

  26. Hertz H (1882) Ueber die beruhrung fester elastische korper. J Reine Angew Math 92:156–171

    MathSciNet  MATH  Google Scholar 

  27. Holzer SM, Yosibashi Z (1996) The p-version of the finite element method in incremental elasto-plastic analysis. Int J Numer Methods Eng 39:1859–1878

    Article  MATH  Google Scholar 

  28. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis:cad, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  29. Irons BM, Razzaque A (1972) Experience with the patch test for convergence in finite elements. In: Aziz AK (ed) The mathematical foundations of the finite element method with applications to partial diferential equations. Academic Press, New York, pp 557–587

    Google Scholar 

  30. Jeremic B, Xenophontos C (1999) Application of the \(p\)-version of the finite element method to elastoplasticity with localization of deformation. Commun Numer Methods Eng 15:867–876

    Article  MathSciNet  MATH  Google Scholar 

  31. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  32. Karniadakis G, Spencer S (2004) Spectral/hp element methods for computional fluid dynamics, 2nd edn. Oxford Science Publications, Oxford

    Google Scholar 

  33. Konyukhov A, Schweizerhof K (2009) Incorporation of contact for high-order finite elements in covariant form. Comput Methods Appl Mech Eng 198:1213–1223

    Article  MathSciNet  MATH  Google Scholar 

  34. Laursen TA (1992) Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Department of Mechanical Engineering—Stanford University

  35. Laursen TA (2002) Computational contact and impact mechanics, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  36. Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  37. Laursen TA, Simo JC (1993a) Algorithmic symmetrization of Coulomb frictional problems using augmented Lagrangians. Comput Methods Appl Mech Eng 108:133–146

    Article  MathSciNet  MATH  Google Scholar 

  38. Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300

    MathSciNet  MATH  Google Scholar 

  39. Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented lagragian method. Comput Mech 49:1–20

    Article  MathSciNet  MATH  Google Scholar 

  40. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–741

    Article  MathSciNet  MATH  Google Scholar 

  41. Luenberger DG (1984) Linear and non linear programming. Addison-Wesley Publishing Company-Inc, Boston

    MATH  Google Scholar 

  42. Matzen ME, Bischoff M (2016) A weighted point-based formulation for isogeometric contact. Comput Methods Appl Mech Eng 308:73–95

    Article  MathSciNet  Google Scholar 

  43. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

    Article  MathSciNet  MATH  Google Scholar 

  44. Mcdevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547

    Article  MathSciNet  MATH  Google Scholar 

  45. Navarro-Jimenez JM, Tur M, Fuenmayor FJ (2018) On the effect of the contact surface definition in the Cartesian grid finite element method. Adv Model Simul Eng Sci 5:12

    Article  Google Scholar 

  46. PÁCzelt I, SzabÓ BA, SzabÓ T (1999) Solution of contact problem using the \(hp\)-version of the finite element method. Comput Math Appl 38:49–69

    Article  MathSciNet  MATH  Google Scholar 

  47. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94:373–389

    Article  MATH  Google Scholar 

  48. Piegl L, Tiller W (1987) Curve and surface construictions using rational b-splines. Comput Aided Des 19:485–498

    Article  MATH  Google Scholar 

  49. Popp A, Michael WG, Wolfgang AW (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79:1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  50. Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34(4):B421–B446

    Article  MathSciNet  MATH  Google Scholar 

  51. Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336

    Article  MATH  Google Scholar 

  52. Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20:305–319

    Article  MATH  Google Scholar 

  53. Puso MA, Laursen TA (2004a) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629

    Article  MATH  Google Scholar 

  54. Puso MA, Laursen TA (2004b) A mortar segment-to-segment contact method for large deformation. Comput Methods Appl Mech Eng 193:4891–4913

    Article  MathSciNet  MATH  Google Scholar 

  55. Rogers D, Adams J (1990) Mathematical elements for computer graphics, 2nd edn. McGraw-Hill, New York City

    Google Scholar 

  56. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180

    Article  MathSciNet  MATH  Google Scholar 

  57. Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng 57:2177–2203

    Article  MATH  Google Scholar 

  58. Taylor RL, Papadopoulos O (1991) On a patch test for contact problems in two dimensions. In: Wagner W, Wriggers P (eds) Nonlinear computational mechanics. Springer, Berlin, pp 690–702

    Google Scholar 

  59. Temizer, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  60. Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186

    Article  MathSciNet  MATH  Google Scholar 

  61. Tiller W (1983) Rational b-splines for curve and surface representation. IEEE Comput Gr Appl 3:61–69

    Article  Google Scholar 

  62. Versprille KJ (1975) Computer-aided design applications of the rational B-spline approximation form. PhD thesis, Syracuse University

  63. Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Berlin

    Book  MATH  Google Scholar 

  64. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  65. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  66. Wriggers P, Haraldsson A (2003) A simple formulation for two-dimensional contact problems using a moving friction cone. Commun Numer Methods Eng 19:285–295

    Article  MathSciNet  MATH  Google Scholar 

  67. Wriggers P, Krstulovic-Opara L (2004) The moving friction cone approach for three-dimensional contact simulations. Int J Comput Methods 1:105–119

    Article  MATH  Google Scholar 

  68. Yang B (2009) Mortar finite element method for large deformation contact mechanics. VDM Verlag Dr. Muller Aktiengesellschaft and Co. KG, Saarbrücken

    Google Scholar 

  69. Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197:756–772

    Article  MathSciNet  MATH  Google Scholar 

  70. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225

    Article  MathSciNet  MATH  Google Scholar 

  71. Yang B, Laursen TA, Meng X (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79:1354–1391

    Article  MathSciNet  Google Scholar 

  72. Zhang Y, Bazilevs Y, Goswami S, Bajaa C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of São Paulo Research Foundation (FAPESP), Grant Number 2013/10523-0, National Council for Scientific and Technological Development (CNPq), Grant Number 164733/2017-5 and University of Campinas (UNICAMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Bittencourt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2716 KB)

Supplementary material 2 (mp4 3971 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.P.C., Proenca, S.P.B. & Bittencourt, M.L. High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces. Comput Mech 64, 85–112 (2019). https://doi.org/10.1007/s00466-018-1658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1658-6

Keywords

Navigation