Skip to main content
Log in

Segment-based vs. element-based integration for mortar methods in computational contact mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Mortar finite element methods provide a very convenient and powerful discretization framework for geometrically nonlinear applications in computational contact mechanics, because they allow for a variationally consistent treatment of contact conditions (mesh tying, non-penetration, frictionless or frictional sliding) despite the fact that the underlying contact surface meshes are non-matching and possibly also geometrically non-conforming. However, one of the major issues with regard to mortar methods is the design of adequate numerical integration schemes for the resulting interface coupling terms, i.e. curve integrals for 2D contact problems and surface integrals for 3D contact problems. The way how mortar integration is performed crucially influences the accuracy of the overall numerical procedure as well as the computational efficiency of contact evaluation. Basically, two different types of mortar integration schemes, which will be termed as segment-based integration and element-based integration here, can be found predominantly in the literature. While almost the entire existing literature focuses on either of the two mentioned mortar integration schemes without questioning this choice, the intention of this paper is to provide a comprehensive and unbiased comparison. The theoretical aspects covered here include the choice of integration rule, the treatment of boundaries of the contact zone, higher-order interpolation and frictional sliding. Moreover, a new hybrid scheme is proposed, which beneficially combines the advantages of segment-based and element-based mortar integration. Several numerical examples are presented for a detailed and critical evaluation of the overall performance of the different schemes within several well-known benchmark problems of computational contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4-8):263–271

  3. Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications. Pitman/Wiley, London/New York, pp 13–51

    Google Scholar 

  4. Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173

    Article  MATH  Google Scholar 

  5. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    Article  MathSciNet  MATH  Google Scholar 

  6. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MATH  Google Scholar 

  7. De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123

    Article  MathSciNet  Google Scholar 

  8. Dickopf T, Krause R (2009) Efficient simulation of multi-body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int J Numer Methods Eng 77(13):1834–1862

    Article  MathSciNet  MATH  Google Scholar 

  9. El-Abbasi N, Bathe K-J (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79(16):1473–1486

    Article  Google Scholar 

  10. Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244

    Article  MATH  Google Scholar 

  11. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036

    Article  MathSciNet  MATH  Google Scholar 

  12. Foley J (1997) Computer graphics: principles and practice. Addison-Wesley, Reading

    Google Scholar 

  13. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571

    MathSciNet  MATH  Google Scholar 

  14. Gross D, Hauger W, Schröder J, Wall WA, Bonet J (2011) Engineering mechanics 2. Addison-Wesley, Menlo Park

    Book  MATH  Google Scholar 

  15. Hager C, Wohlmuth BI (2009) Nonlinear complementarity functions for plasticity problems with frictional contact. Comput Methods Appl Mech Eng 198:3411–3427

    Article  MathSciNet  MATH  Google Scholar 

  16. Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semi-smooth Newton method. SIAM J Optim 13(3):865–888

    Article  MathSciNet  Google Scholar 

  17. Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29):3147–3166

    Article  MATH  Google Scholar 

  18. Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J Sci Comput 30(2):572–596

    Article  MathSciNet  MATH  Google Scholar 

  19. Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197(33–40):3045–3056

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45(5):569–599

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuhl D, Ramm E (1999) Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput Methods Appl Mech Eng 178(3–4):343–366

    Article  MathSciNet  MATH  Google Scholar 

  22. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  23. Lee DT, Schachter BJ (1980) Two algorithms for constructing a Delaunay triangulation. Int J Comput Inf Sci 9:219–242

    Article  MathSciNet  MATH  Google Scholar 

  24. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48(10):1525–1547

    Article  MathSciNet  MATH  Google Scholar 

  25. Meisters GH (1975) Polygons have ears. Am Math Mon 82:648–651

    Article  MathSciNet  MATH  Google Scholar 

  26. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554

    Article  MathSciNet  MATH  Google Scholar 

  27. Mousavi SE, Xiao H, Sukumar N (2010) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng 82:99–113

    MathSciNet  MATH  Google Scholar 

  28. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381

    Article  MathSciNet  MATH  Google Scholar 

  29. Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  30. Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465

    Article  MathSciNet  MATH  Google Scholar 

  31. Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34:B421–B446

    Article  MathSciNet  MATH  Google Scholar 

  32. Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3d contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80

    Article  MathSciNet  MATH  Google Scholar 

  33. Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods in Eng 59(3):315–336

    Article  MATH  Google Scholar 

  34. Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20(3):305–319

    Article  MATH  Google Scholar 

  35. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8):601–629

    Article  MathSciNet  MATH  Google Scholar 

  36. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45-47):4891–4913

  37. Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197(6–8):555–566

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(1):353–367

    Article  MathSciNet  MATH  Google Scholar 

  39. Sauer RA (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87(6):593–616

    Article  MATH  Google Scholar 

  40. Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43(5):757–792

    Article  MathSciNet  MATH  Google Scholar 

  41. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50(2):163–180

    Article  MathSciNet  MATH  Google Scholar 

  42. Sommariva A, Vianello M (2007) Product Gauss cubature over polygons based on green’s integration formula. BIT Numer Math 47:441–453

    Article  MathSciNet  MATH  Google Scholar 

  43. Sommariva A, Vianello M (2009) Gauss-green cubature and moment computation over arbitrary geometries. J Comput Appl Math 231:886–896

    Article  MathSciNet  MATH  Google Scholar 

  44. Sudhakar Y, Almeida JP, Wall WA (2014) An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J Comput Phys 273:393–415

    Article  Google Scholar 

  45. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(912):1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  46. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  47. Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873

    Article  MathSciNet  MATH  Google Scholar 

  48. Tur M, Giner E, Fuenmayor FJ, Wriggers P (2012) 2D contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14

    Article  MathSciNet  Google Scholar 

  49. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3):989–1012

    Article  MathSciNet  MATH  Google Scholar 

  50. Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734

    Article  MathSciNet  MATH  Google Scholar 

  51. Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Comput Mech 49:735–747

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiao Z, Gimbutas H (2010) A numerical algorithm for the construction of efficient quadratures in two and higher dimensions. Comput Math Appl 59:663–676

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41(2):189–205

  54. Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197(6–8):756–772

  55. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225

    Article  MathSciNet  MATH  Google Scholar 

  56. Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(48):497–515

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Popp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, P., Popp, A. & Wall, W.A. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55, 209–228 (2015). https://doi.org/10.1007/s00466-014-1093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1093-2

Keywords

Navigation