Skip to main content
Log in

Dual-stage uncertainty modeling and evaluation for transient temperature effect on structural vibration property

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In practical engineering, the changing structural temperature distribution has been considered as an important factor influencing the structural vibration property. By treating the uncertainties in material properties, boundary conditions and external loads as interval variables, this paper proposes a dual-stage uncertainty analysis framework to evaluate the variation of structural natural frequency associated with transient non-uniform temperature distribution. Based on the subinterval dividing strategy, a modified interval vertex method is firstly proposed to predict the uncertain temperature field. As the material mechanical properties are temperature dependent, the components with different temperatures are consequently employed to discrete the structural model. Then by using the Taylor series, an interval perturbation method is developed to solve the generalized eigenvalue problem for the natural frequency prediction. By introducing the traditional Monte Carlo simulations as reference, a 3D plate structure with uncertain parameters is adopted to verify the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ibrahim HH, Yoo HH, Tawfik M, Lee KS (2010) Thermo-acoustic random response of temperature-dependent functionally graded material panels. Comput Mech 46(3):377–386

    Article  MATH  Google Scholar 

  2. Zhou H, Ni Y, Ko J (2011) Eliminating temperature effect in vibration-based structural damage detection. J Eng Mech 137(12):785–796

    Article  Google Scholar 

  3. Xia Y, Chen B, Weng S, Ni Y, Xu Y (2012) Temperature effect on vibration properties of civil structures: a literature review and case studies. J Civil Struct Health Monit 2(1):29–46

    Article  Google Scholar 

  4. Limongelli M (2010) Frequency response function interpolation for damage detection under changing environment. Mech Syst Signal Process 24(8):2898–2913

    Article  Google Scholar 

  5. Zhang S, Oskay C (2017) Reduced order variational multiscale enrichment method for thermo-mechanical problems. Comput Mech 59(6):887–907

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao X, Liew KM (2010) A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Comput Mech 45(4):297–310

    Article  MATH  Google Scholar 

  7. Ebrahimi F, Salari E (2015) Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos Part A Eng 78:272–290

    Article  Google Scholar 

  8. Guzman-Maldonado E, Hamila N, Boisse P, Bikard J (2015) Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites. Compos Part A Appl Syst 78:211–222

    Article  Google Scholar 

  9. Balzani D, Gandhi A, Tanaka M, Schroder J (2015) Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices. Comput Mech 55(5):861–871

    Article  MathSciNet  MATH  Google Scholar 

  10. Petersen D, Rolfes R, Zimmermann R (2001) Thermo-mechanical design aspects for primary composite structures of large transport aircraft. Aerosp Sci Technol 5(2):135–146

    Article  MATH  Google Scholar 

  11. Gu L, Qin Z, Chu F (2015) Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam. Mech Syst Signal Process 60:619–643

    Article  Google Scholar 

  12. Marzani A, Salamone S (2012) Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors. Mech Syst Signal Process 30:204–217

    Article  Google Scholar 

  13. Xia Y, Xu Y, Wei Z, Zhu H, Zhou X (2011) Variation of structural vibration characteristics versus non-uniform temperature distribution. Eng Struct 33(1):146–153

    Article  Google Scholar 

  14. Brown AM (2002) Temperature-dependent modal test/analysis correlation of X-34 FASTRAC composite rocket nozzle. J Propul Power 18(2):284–288

    Article  Google Scholar 

  15. Yang J, Shen H (2002) Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J Sound Vib 255(3):579–602

    Article  Google Scholar 

  16. Nayeri RD, Masri SF, Ghanem RG, Nigbor RL (2008) A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient vibration measurements. Smart Mater Struct 17(2):1–19

    Article  Google Scholar 

  17. Sun K, Zhao Y, Hu H (2015) Identification of temperature-dependent thermal-structural properties via finite element model updating and selection. Mech Syst Signal Process 52:147–161

    Article  Google Scholar 

  18. Peeters B, Maeck J, De Roeck G (2001) Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater Struct 10(3):518–527

    Article  Google Scholar 

  19. Wang C, Qiu Z, Xu M (2017) Collocation methods for fuzzy uncertainty propagation in heat conduction problem. Int J Heat Mass Trans 107:631–639

    Article  Google Scholar 

  20. Ezvan O, Batou A, Soize C, Gagliardini L (2017) Multilevel model reduction for uncertainty quantification in computational structural dynamics. Comput Mech 59(2):219–246

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang C, Matthies HG, Xu M, Li Y (2018) Hybrid reliability analysis and optimization for spacecraft structural system with random and fuzzy parameters. Aerosp Sci Technol 77:353–361

    Article  Google Scholar 

  22. Xu M, Du J, Wang C, Li Y (2017) Hybrid uncertainty propagation in structural-acoustic systems based on the polynomial chaos expansion and dimension-wise analysis. Comput Methods Appl Mech Eng 320:198–217

    Article  MathSciNet  Google Scholar 

  23. Qiu Z, Yang D, Elishakoff I (2008) Probabilistic interval reliability of structural systems. Int J Solids Struct 45(10):2850–2860

    Article  MATH  Google Scholar 

  24. Moens D, Vandepitte D (2006) Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch Comput Methods Eng 13(3):389–464

    Article  MathSciNet  MATH  Google Scholar 

  25. Ben-Haim Y, Elishakoff I (2013) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  26. Muhanna RL, Mullen RL (2001) Uncertainty in mechanics problems-interval-based approach. J Eng Mech 127(6):557–566

    Article  Google Scholar 

  27. Wang C, Qiu Z, Wang X, Wu D (2014) Interval finite element analysis and reliability-based optimization of coupled structural-acoustic system with uncertain parameters. Finite Elem Anal Des 91:108–114

    Article  Google Scholar 

  28. Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but- non-random parameters via interval analysis. Comput Methods Appl Mech Eng 152(3):361–372

    Article  MATH  Google Scholar 

  29. Wang C, Qiu Z, Xu M, Li Y (2017) Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters. Appl Math Model 47:573–586

    Article  MathSciNet  Google Scholar 

  30. Chen S, Lian H, Yang X (2003) Interval eigenvalue analysis for structures with interval parameters. Finite Elem Anal Des 39(5):419–431

    Article  Google Scholar 

  31. Chen S, Yang X (2000) Interval finite element method for beam structures. Finite Elem Anal Des 34(1):75–88

    Article  MATH  Google Scholar 

  32. Xia B, Yu D (2012) Interval analysis of acoustic field with uncertain-but-bounded parameters. Comput Struct 112:235–244

    Article  Google Scholar 

  33. Xia B, Yu D (2012) Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters. J Sound Vib 331(16):3774–3790

    Article  Google Scholar 

  34. Ben-Haim Y (1994) A non-probabilistic concept of reliability. Struct Saf 14(4):227–245

    Article  Google Scholar 

  35. Jiang C, Ni B, Han X, Tao Y (2014) Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Eng 268:656–676

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiang C, Han X, Liu G (2008) Uncertain optimization of composite laminated plates using a nonlinear interval number programming method. Comput Struct 86(17):1696–1703

    Article  Google Scholar 

  37. Wang C, Qiu Z (2015) Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters. Int J Heat Mass Trans 80:319–328

    Article  Google Scholar 

  38. Mendes MAA, Ray S, Pereira JMC, Pereira JCF, Trimis D (2012) Quantification of uncertainty propagation due to input parameters for simple heat transfer problems. Int J Therm Sci 60:94–105

    Article  Google Scholar 

  39. Wang C, Qiu Z, Yang Y (2016) Collocation methods for uncertain heat convection-diffusion problem with interval input parameters. Int J Therm Sci 107:230–236

    Article  Google Scholar 

  40. Xue Y, Yang H (2013) Interval identification of thermal parameters for convection-diffusion heat transfer problems. In: Asia-Pacific congress for computational mechanics, Singapore

  41. Tao W (2001) Numerical heat transfer. Xi’an Jiaotong University Press, Xi’an

    Google Scholar 

  42. Smith GD (1985) numerical solutions of partial differential equations (finite difference methods). Clarendon Press, Oxford

    Google Scholar 

  43. Rump SM (1992) On the solution of interval linear systems. Computing 47(3–4):337–353

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang C, Qiu Z (2016) Subinterval perturbation methods for uncertain temperature field prediction with large fuzzy parameters. Int J Therm Sci 100:381–390

    Article  Google Scholar 

  45. Fujimoto RM (2000) Parallel and distributed simulation systems. Wiley, New York

    Google Scholar 

  46. Shackelford JF, Han YH, Kim S, Kwon SH (2016) CRC materials science and engineering handbook. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Matthies, H.G. Dual-stage uncertainty modeling and evaluation for transient temperature effect on structural vibration property. Comput Mech 63, 323–333 (2019). https://doi.org/10.1007/s00466-018-1596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1596-3

Keywords

Navigation