Skip to main content
Log in

An isogeometric approach for analysis of phononic crystals and elastic metamaterials with complex geometries

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An isogeometric analysis (IGA) framework is presented to construct and solve dispersion relations for generating the band structure of periodic materials with complicated geometries representing phononic crystals and elastic metamaterials. As the dispersive properties depend on the microstructural geometry, an accurate representation of microstructural geometrical features is paramount. To this end, the ability of isogeometric analysis to exactly model complex curved geometries is exploited, and wave propagation in infinitely periodic solids is combined with isogeometric analysis. The benefits of IGA are demonstrated by comparing the results to those obtained using standard finite element analysis (FEA). It is shown that the IGA solutions can reach the same level of accuracy as FEA while using significantly fewer degrees of freedom. IGA is applied to phononic crystals and elastic metamaterials and the band structure for a variety of unit cells with complex microstructural geometries is investigated to illustrate the desirable dispersive effects in these metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lee J-H, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Adv Mater 24:4782–4810. https://doi.org/10.1002/adma.201201644

    Article  Google Scholar 

  2. Pierre AD (2013) Acoustic metamaterials and phononic crystals. Springer, Berlin

  3. Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66:040802-040802-38

    Google Scholar 

  4. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78. https://doi.org/10.1007/bf00248490

    Article  MathSciNet  MATH  Google Scholar 

  5. Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382. https://doi.org/10.1016/0022-460X(92)90059-7

    Article  Google Scholar 

  6. Kushwaha MS, Halevi P, Dobrzynski L, Djafarirouhani B (1993) Acoustic band-structure of periodic elastic composites. Phys Rev Lett 71:2022–2025. https://doi.org/10.1103/PhysRevLett.71.2022

  7. Brillouin L (1946) Wave propagation in periodic structures, 1st edn. McGraw-Hill, London

    MATH  Google Scholar 

  8. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289:1734–1736

    Article  Google Scholar 

  9. Wang G, Wen X, Wen J, Shao L, Liu Y (2004) Two-dimensional locally resonant phononic crystals with binary structures. Phys Rev Lett 93:154302

    Article  Google Scholar 

  10. Hirsekorn M, Delsanto PP, Batra NK, Matic P (2004) Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics 42:231–235. https://doi.org/10.1016/j.ultras.2004.01.014

    Article  Google Scholar 

  11. Wang P, Casadei F, Kang SH, Bertoldi K (2015) Locally resonant band gaps in periodic beam lattices by tuning connectivity. Phys Rev B 91:020103

    Article  Google Scholar 

  12. Sridhar A, Kouznetsova VG, Geers MGD (2016) Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum. Comput Mech 57:423–435. https://doi.org/10.1007/s00466-015-1254-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruzzene M, Scarpa F, Soranna F (2003) Wave beaming effects in two-dimensional cellular structures. Smart Mater Struct 12:363

    Article  Google Scholar 

  14. Casadei F, Rimoli JJ (2013) Anisotropy-induced broadband stress wave steering in periodic lattices. Int J Solids Struct 50:1402–1414. https://doi.org/10.1016/j.ijsolstr.2013.01.015

    Article  Google Scholar 

  15. Celli P, Gonella S (2014) Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry. J Appl Phys 115:103502. https://doi.org/10.1063/1.4867918

    Article  Google Scholar 

  16. Liu Z, Chan CT, Sheng P (2002) Three-component elastic wave band-gap material. Phys Rev B 65:165116

    Article  Google Scholar 

  17. Sigalas MM, Garcia N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87:3122–3125. https://doi.org/10.1063/1.372308

    Article  Google Scholar 

  18. Biwa S, Yamamoto S, Kobayashi F, Ohno N (2004) Computational multiple scattering analysis for shear wave propagation in unidirectional composites. Int J Solids Struct 41:435–457. https://doi.org/10.1016/j.ijsolstr.2003.09.015

    Article  MATH  Google Scholar 

  19. Phani AS, Woodhouse J, Fleck NA (2006) Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 119:1995–2005. https://doi.org/10.1121/1.2179748

    Article  Google Scholar 

  20. Gonella S, Ruzzene M (2008) Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J Sound Vib 312:125–139. https://doi.org/10.1016/j.jsv.2007.10.033

    Article  MATH  Google Scholar 

  21. Zhao J, Li Y, Liu WK (2015) Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM. Comput Mech 55:659–672. https://doi.org/10.1007/s00466-015-1129-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–95. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Hoboken

    Book  MATH  Google Scholar 

  24. Verhoosel CV, Scott MA, Hughes TJ, De Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Meth Eng 86:115–134

    Article  MathSciNet  MATH  Google Scholar 

  25. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378. https://doi.org/10.1007/s00466-007-0193-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang G, Alberdi R, Khandelwal K (2016) Analysis of three-dimensional curved beams using isogeometric approach. Eng Struct 117:560–574. https://doi.org/10.1016/j.engstruct.2016.03.035

    Article  Google Scholar 

  27. Zhang G, Khandelwal K (2016) Modeling of nonlocal damage-plasticity in beams using isogeometric analysis. Comput & Struct 165:76–95. https://doi.org/10.1016/j.compstruc.2015.12.006

  28. Cottrell J, Reali A, Bazilevs Y, Hughes T (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    Article  MathSciNet  MATH  Google Scholar 

  29. Weeger O, Wever U, Simeon B (2013) Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations. Nonlinear Dyn 72:813–835

    Article  MathSciNet  MATH  Google Scholar 

  30. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37. https://doi.org/10.1007/s00466-008-0315-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988

    Article  MathSciNet  MATH  Google Scholar 

  32. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 197:4104–4124. https://doi.org/10.1016/j.cma.2008.04.006

    Article  MathSciNet  MATH  Google Scholar 

  33. Hughes TJR, Evans JA, Reali A (2014) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput Methods Appl Mech Eng 272:290–320. https://doi.org/10.1016/j.cma.2013.11.012

    Article  MathSciNet  MATH  Google Scholar 

  34. Graff KF (1975) Wave motion in elastic solids. Oxford University Press, London

    MATH  Google Scholar 

  35. Kittel C (1986) Introduction to solid state physics, 6th edn. Wiley, New York

    MATH  Google Scholar 

  36. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis, New York

  37. Piegl L, Tiller W (1997) The NURBS book. 1997. Monographs in Visual Communication

  38. Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam

    Google Scholar 

  39. Nguyen VP, Kerfriden P, Brino M, Bordas SPA, Bonisoli E (2014) Nitsche’s method for two and three dimensional NURBS patch coupling. Comput Mech 53:1163–1182. https://doi.org/10.1007/s00466-013-0955-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Cliffe KA, Garratt TJ, Spence A (1994) Eigenvalues of block matrices arising from problems in fluid mechanics. SIAM J Matrix Anal Appl 15:1310–1318. https://doi.org/10.1137/s0895479892233230

    Article  MathSciNet  MATH  Google Scholar 

  41. Langley RS (1994) On the modal density and energy flow characteristics of periodic structures. J Sound Vib 172:491–511. https://doi.org/10.1006/jsvi.1994.1191

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The presented work is supported in part by the US National Science Foundation through Grant CMMI-1055314. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Khandelwal.

Appendices

Appendix A: Control data for NURBS shapes

1.1 A.1 Geometry from Sect. 7.1

Fig. 17
figure 17

Patch discretization of the domain shown in Sect. 7.2

Fig. 18
figure 18

Control point polygon of two patches in Fig. 17. a Patch 1, b Patch 2

Table 6 Control points and weights for Patch 1 in Fig. 18a
Table 7 Control points and weights for Patch 2 in Fig. 18b

The domain in this example is divided into 12 patches as shown in Fig. 15. Only two patches, patch-1 and patch-2, are unique due to symmetry. The control point polygons for the two patches are shown in Fig. 16. Control point data and the corresponding weights for the two patches are provided in Tables 4 and 5, respectively.

Fig. 19
figure 19

Patch discretization of the domain shown in Sect. 7.3

Fig. 20
figure 20

Control point polygon of two patches in Fig. 19.a Patch 1, b Patch 2

Table 8 Control points and weights for Patch 1 in Fig. 20a

A.2 Geometry from Sect. 7.2

The domain in this example is divided into 16 patches as shown in Fig. 17. Only two patches, Patch 1 and Patch 2, are unique due to symmetry. The control point polygons for the two patches are shown in Fig. 18. Control point data and the corresponding weights for the two patches are provided in Tables 6 and 7, respectively.

1.1 A.3 Geometry from Sect. 7.3

The domain with asymmetric hole in Example 7.3 is divided into 4 patches as shown in Fig. 19. Only two patches, Patch 1 and Patch 2, are unique due to symmetry. The control point polygons for the two patches are shown in Fig. 20. Control point data and the corresponding weights for the two patches are provided in Tables 8 and 9, respectively.

Table 9 Control points and weights for Patch 2 in Fig. 20b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberdi, R., Zhang, G. & Khandelwal, K. An isogeometric approach for analysis of phononic crystals and elastic metamaterials with complex geometries. Comput Mech 62, 285–307 (2018). https://doi.org/10.1007/s00466-017-1497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1497-x

Keywords

Navigation