Skip to main content
Log in

A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The implementation of novel material models in the microscale gives a deeper understanding of inner and intercrystalline effects of crystalline materials. For future works, this allows more precise predictions of macroscale models. Here, we present a finite gradient crystal plasticity theory which preserves the single crystal slip kinematics. However, the model is restricted to one gradient-stress, associated with the gradient of the accumulated plastic slip, in order to account for long range dislocation interactions in a physically simplified, numerically efficient approach. In order to model the interaction of dislocations with and their transfer through grain boundaries, a grain boundary yield condition is introduced. The grain boundary flow rule is evaluated at sharp interfaces using discontinuous trial functions in the finite element implementation, thereby allowing for a discontinuous distribution of the accumulated plastic slip. Simulations of crystal aggregates are performed under different loading conditions which reproduce well the size dependence of the yield strength. An analytical solution for a one-dimensional single slip supports the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Slip system index

\(\beta \) :

Isotropic hardening contribution

\(\dot{\gamma }_0\) :

Reference plastic slip rate

\(\gamma _\alpha \) :

Plastic slip of system \(\alpha \)

\(\dot{\gamma }_\alpha \) :

Plastic slip rate of system \(\alpha \)

\(\gamma _\mathrm {ac}\) :

Accumulated plastic slip

\(\breve{\gamma }_\mathrm {ac}\) :

Micromorphic accumulated plastic slip

:

Jump of micromorphic accumulated plastic slip rate

\(\langle \dot{\breve{\gamma }}_{\mathrm {ac}} \rangle \) :

Mean value of micromorphic accumulated plastic slip rate

\(\dot{\breve{\gamma }}_\mathrm {ac}^{+}\) :

Right-hand limit of micromorphic accumulated plastic slip rate

\(\dot{\breve{\gamma }}_\mathrm {ac}^{-}\) :

Left-hand limit of micromorphic accumulated plastic slip rate

\(\mathrm {\Gamma }\) :

Grain boundary

\(\varTheta _{0}\) :

Initial hardening modulus

\(\varTheta _{\infty }\) :

Asymptotic hardening modulus

\(\varvec{\xi }\) :

Vector valued micromorphic stress

\(\mathrm {\Xi }\) :

Micromorphic surface traction

\(\mathrm {\Xi }^{\pm }\) :

Grain boundary micromorphic tractions

\(\mathrm {\Xi }_{\mathrm {j}}\) :

Work conjugate micromorphic traction to

\(\mathrm {\Xi }_{\mathrm {m}}\) :

Work conjugate micromorphic traction to \( \langle \dot{\breve{\gamma }}_{\mathrm {ac}} \rangle \)

\(\mathrm {\Xi }_{\mathrm {j}}^{\mathrm {d}}\) :

Dissipative grain boundary micromorphic traction corresponding to

\(\mathrm {\Xi }_{\mathrm {m}}^{\mathrm {d}}\) :

Dissipative grain boundary micromorphic traction corresponding to \( \langle \dot{\breve{\gamma }}_{\mathrm {ac}} \rangle \)

\(\mathrm {\Xi }_{\mathrm {j}}^{\mathrm {e}}\) :

Energetic grain boundary micromorphic traction corresponding to

\(\mathrm {\Xi }_{\mathrm {m}}^{\mathrm {e}}\) :

Energetic grain boundary micromorphic traction corresponding to \( \langle \dot{\breve{\gamma }}_{\mathrm {ac}} \rangle \)

\(\pi \) :

Scalar micromorphic stress

\(\rho _\alpha \) :

Dislocation density of system \(\alpha \)

\(\varrho \) :

Mass density

\(\varvec{\sigma }\) :

Cauchy stress

\(\tau _\alpha \) :

Resolved shear stress of system \(\alpha \)

\(\tau ^\mathrm {C}\) :

Critical resolved shear stress

\(\tau ^\mathrm {C}_{0}\) :

Initial critical resolved yield stress

\(\tau ^\mathrm {C}_{\infty }\) :

Asymptotic critical resolved yield stress

\(\tau _\mathrm {D}\) :

Drag stress

\(\varvec{\chi }\) :

Motion

\(\psi \) :

Mass specific Helmholtz free energy

b :

Absolute value of Burger’s vector

\({\mathcal B}\) :

Material Body

c :

Constant, dimension free parameter

\(\varvec{ d}_\alpha \) :

Slip direction of system \(\alpha \)

\(\partial {\mathcal B}_\mathrm {t}\) :

Neumann boundary corresponding to \( t \)

\(\partial {\mathcal B}_\mathrm {\Xi }\) :

Neumann boundary corresponding to \( \mathrm {\Xi } \)

\({\mathbb { C}}\) :

Forth-order elastic stiffness tensor

\({\mathcal D}_\mathrm {tot}\) :

Total dissipation

\({\mathcal D}_{\mathrm {B,red}}\) :

Reduced dissipation of the bulk material

\({\mathcal D}_{\mathrm {\Gamma }}\) :

Dissipation of the grain boundaries

\(\varvec{ E}_\mathrm {e}\) :

Elastic Green strain tensor

\(f_\mathrm {\Gamma j}\) :

Grain boundary yield function related to

\(f_\mathrm {\Gamma m}\) :

Grain boundary yield function related to \( \langle \dot{\breve{\gamma }}_{\mathrm {ac}} \rangle \)

\(\varvec{ F}\) :

Deformation gradient

\(\varvec{ F}_\mathrm {e}\) :

Elastic deformation gradient

\(\varvec{ F}_\mathrm {p}\) :

Plastic deformation gradient

G :

Shear modulus

\(H_\chi \) :

Penalty factor

J :

Determinant of the deformation gradient

\(J_\mathrm {e}\) :

Determinant of the elastic deformation gradient

\(k_1\) :

Storage coefficient

\(k_2\) :

Dynamic recovery coefficient

\(K_\mathrm {g}\) :

Defect energy parameter

\(K_\mathrm {j}\) :

Material parameter corresponding to

\(K_\mathrm {m}\) :

Material parameter corresponding to \( \langle {\breve{\gamma }}_{\mathrm {ac}} \rangle \)

\(\varvec{ L}\) :

Velocity gradient

\(\varvec{ L}_\mathrm {p}\) :

Distortion rate tensor

\(\varvec{ n}\) :

Outward pointing unit normal vector

\(\varvec{ n}_\alpha \) :

Slip plane normal of system \(\alpha \)

\(\varvec{ n}_{\mathrm {\Gamma }}\) :

Normal vector of the grain boundary

N :

Number of slip systems

\(\breve{p}\) :

Generalized relative stress

\({\mathcal P}_\mathrm {ext}\) :

External power

\({\mathcal P}_\mathrm {int}\) :

Internal power

\(\varvec{ R}_\mathrm {e}\) :

Lattice rotation

\(\varvec{ S}\) :

Second Piola-Kirchhoff stress

t :

Time

\(\varvec{ t}\) :

Surface traction

\(\varvec{ u}\) :

Displacement vector

\(\varvec{ U}_\mathrm {e}\) :

Lattice stretch

\(\varvec{ v}\) :

Velocity vector

\(v_\alpha \) :

Averaged dislocation velocity of system \(\alpha \)

\(W_\mathrm {e}\) :

Elastic contribution to the free energy density

\(W_\mathrm {g}\) :

Gradient contribution to the free energy density

\(W_\mathrm {h}\) :

Isotropic hardening contribution to the free energy density

\(W_\mathrm {\Gamma }\) :

Free energy density of the grain boundaries

\(W_\chi \) :

Numerical penalty contribution to the free energy density

\(\varvec{ x}\) :

Position vector of a material point in current configuration

\(\varvec{ X}\) :

Position vector of a material point in reference configuration

References

  1. Orowan E (1934) Zur Kristallplastizität. III. Z Phys 89(9):634

    Article  Google Scholar 

  2. Polanyi M (1934) Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z Phys 89(9):660

    Article  Google Scholar 

  3. Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond A Math Phys Eng Sci 145(855):362

    Article  MATH  Google Scholar 

  4. Schmid E, Boas W (1935) Kristallplastizität, mit besonderer Berücksichtigung der Metalle. Springer, Berlin

    Google Scholar 

  5. Bishop J, Hill R (1951) A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Lond Edinb Dublin Philos Mag J Sci 42(327):414

    Article  MATH  MathSciNet  Google Scholar 

  6. Hill R (1966) Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids 14(2):95

    Article  Google Scholar 

  7. Armstrong R, Codd I, Douthwaite RM, Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7(73):45

    Article  Google Scholar 

  8. Conrad H, Feuerstein S, Rice L (1967) Effects of grain size on the dislocation density and flow stress of niobium. Mater Sci Eng 2(3):157

    Article  Google Scholar 

  9. Estrin Y, Tóth L, Molinari A, Bréchet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46(15):5509

    Article  Google Scholar 

  10. Kocks U, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171

    Article  Google Scholar 

  11. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64(9):747

  12. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25

    Google Scholar 

  13. Eshelby J, Frank F, Nabarro F (1951) The equilibrium of linear arrays of dislocations. Lond Edinb Dublin Philos Mag J Sci 42(327):351

    Article  MATH  MathSciNet  Google Scholar 

  14. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21(170):399

    Article  Google Scholar 

  15. Thompson AW, Baskes MI, Flanagan WF (1973) The dependence of polycrystal work hardening on grain size. Acta Metall 21(7):1017

    Article  Google Scholar 

  16. Nye J (1953) Some geometrical relations in dislocated crystals. Acta Metall 1(2):153

    Article  Google Scholar 

  17. Cermelli P, Gurtin ME (2001) On the characterization of geometrically necessary dislocations in finite plasticity. J Mech Phys Solids 49(7):1539

    Article  MATH  Google Scholar 

  18. Aifantis E (1987) The physics of plastic deformation. Int J Plast 3:211

    Article  MATH  Google Scholar 

  19. Forest S, Guéninchault N (2013) Inspection of free energy functions in gradient crystal plasticity. Acta Mech Sin 29(6):763

    Article  MATH  MathSciNet  Google Scholar 

  20. Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475

    Article  Google Scholar 

  21. Gurtin ME (2000) On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48(5):989

    Article  MATH  MathSciNet  Google Scholar 

  22. Menzel A, Steinmann P (2000) On the continuum formulation of higher gradient plasticity for single and polycrystals. J Mech Phys Solids 48(8):1777

    Article  MATH  MathSciNet  Google Scholar 

  23. Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J Mech Phys Solids 53(7):1624

    Article  MATH  MathSciNet  Google Scholar 

  24. Ohno N, Okumura D (2007) Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J Mech Phys Solids 55(9):1879

    Article  MATH  MathSciNet  Google Scholar 

  25. Gurtin ME (2008) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int J Plast 24(4):702

    Article  MATH  Google Scholar 

  26. Miehe C (2011) A multi-field incremental variational framework for gradient-extended standard dissipative solids. J Mech Phys Solids 59(4):898

    Article  MATH  MathSciNet  Google Scholar 

  27. Wulfinghoff S, Böhlke T (2013) Equivalent plastic strain gradient crystal plasticity-enhanced power law subroutine. GAMM Mitt 36(2):134

    Article  MATH  MathSciNet  Google Scholar 

  28. Bayerschen E, Stricker M, Wulfinghoff S, Weygand D, Böhlke T (2015) Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. In: Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences, vol 471, p 2184

  29. Begau C, Sutmann G, Hartmaier A (2015) Free energy function of dislocation densities by large scale atomistic simulation. arXiv:1512.02845

  30. Jones R, Zimmerman J, Po G (2016) Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion. arXiv:1608.04335

  31. Bittencourt E, Needleman A, Gurtin M, Giessen E (2003) A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J Mech Phys Solids 51(2):281

    Article  MATH  MathSciNet  Google Scholar 

  32. Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity and damage. J Eng Mech 135:117

    Article  Google Scholar 

  33. Eringen AC, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189

    Article  MATH  MathSciNet  Google Scholar 

  34. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51

    Article  MATH  MathSciNet  Google Scholar 

  35. Reddy B, Wieners C, Wohlmuth B (2012) Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int J Numer Methods Eng 90(6):784

    Article  MATH  MathSciNet  Google Scholar 

  36. Wulfinghoff S, Böhlke T (2012) Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. In: Proceedings of the Royal Society A (The Royal Society, 2012), vol 468, pp 2682–2703

  37. Wulfinghoff S, Bayerschen E, Böhlke T (2013) A gradient plasticity grain boundary yield theory. Int J Plast 51:33

    Article  Google Scholar 

  38. Fredriksson P, Gudmundson P (2005) Size-dependent yield strength of thin films. Int J Plast 21(9):1834

    Article  MATH  Google Scholar 

  39. Gurtin ME, Needleman A (2005) Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector. J Mech Phys Solids 53(1):1

    Article  MATH  MathSciNet  Google Scholar 

  40. Gurtin ME (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J Mech Phys Solids 56(2):640

    Article  MATH  MathSciNet  Google Scholar 

  41. Özdemir İ, Yalçinkaya T (2014) Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput Mech 54(2):255

    Article  MATH  MathSciNet  Google Scholar 

  42. Gottschalk D, McBride A, Reddy B, Javili A, Wriggers P, Hirschberger C (2016) Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput Mater Sci 111:443

    Article  Google Scholar 

  43. Lee T, Robertson I, Birnbaum H (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62(1):131

    Article  Google Scholar 

  44. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131

    Article  MATH  Google Scholar 

  45. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4):993

    Article  MATH  Google Scholar 

  46. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253

    MATH  MathSciNet  Google Scholar 

  47. Bertram A (2008) Plasticity. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Palm JH (1951) Stress-strain relations for uniform monotonic deformation under triaxial loading. Appl Sci Res 2(1):54

    Article  Google Scholar 

  49. Bayerschen E (2017) Single-crystal gradient plasticity with an accumulated plastic slip: theory and applications. Ph.D. thesis, Karlsruhe Institute for Technologie (KIT), Karlsruhe

  50. Cermelli P, Gurtin ME (2002) Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int J Solids Struct 39(26):6281

    Article  MATH  Google Scholar 

  51. Reddy BD (2011) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin Mech Thermodyn 23(6):551

    Article  MATH  MathSciNet  Google Scholar 

  52. Bayerschen E, Böhlke T (2016) Power-law defect energy in a single-crystal gradient plasticity framework: a computational study. Comput Mech 58(1):13

    Article  MATH  MathSciNet  Google Scholar 

  53. Bayley C, Brekelmans W, Geers M (2006) A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43(24):7268

    Article  MATH  Google Scholar 

  54. Simone A, Duarte CA, Van der Giessen E (2006) A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries. Int J Numer Methods Eng 67(8):1122

    Article  MATH  MathSciNet  Google Scholar 

  55. Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463

    Article  MATH  MathSciNet  Google Scholar 

  56. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses. J Appl Math Mech 23(3):622

    Article  MATH  MathSciNet  Google Scholar 

  57. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100

    Article  Google Scholar 

  58. Gurtin ME, Anand L (2008) Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J Mech Phys Solids 56(1):184

    Article  MATH  MathSciNet  Google Scholar 

  59. Aifantis K, Soer W, Hosson JD, Willis J (2006) Interfaces within strain gradient plasticity: theory and experiments. Acta Mater 54(19):5077

    Article  Google Scholar 

  60. Aifantis K, Ngan A (2007) Modeling dislocation-grain boundary interactions through gradient plasticity and nanoindentation. Mater Sci Eng A 459(12):251.

  61. Yang B, Motz C, Rester M, Dehm G (2012) Yield stress influenced by the ratio of wire diameter to grain size—a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philos Mag 92(25–27):3243

    Article  Google Scholar 

Download references

Acknowledgements

The support of the German Research Foundation (DFG) of the project “Process chains in sheet metal manufacturing” of the DFG Research Group 1483 is gratefully acknowledged, as well as the partial support of the DFG Research Group 1650 “Dislocation based Plasticity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Böhlke.

Appendix

Appendix

1.1 Derivation of field equations

The application of the chain rule and Gauss’ theorem on the contributions of the virtual mechanical energy balance (cf. Eq. 13), yields

(75)

and for the micromorphic contribution

(76)

1.2 Transformation of internal power contributions

The power of the internal forces is formulated with respect to the current placement (cf. Eq. 11). A transformation of the individual contributions to the reference placement is performed.

The transformation of the contribution of the Cauchy stress \( \varvec{\sigma } \) yields

$$\begin{aligned} \begin{aligned} \int _{{\mathcal B}} \varvec{\sigma }\cdot \varvec{ L}{\,\mathrm d}v&= \int _{{\mathcal B}_0} \varvec{\sigma }\cdot \left( \dot{\varvec{ F}}{\varvec{ F}}^\mathrm{-1}\right) J {\,\mathrm d}V \\&= \int _{{\mathcal B}_0} \underbrace{\left( J {\varvec{ F}}^\mathrm{-1}\varvec{\sigma }{\varvec{ F}}^\mathsf{-T}\right) }_{\varvec{ S}} \cdot \underbrace{\left( {\varvec{ F}}^\mathsf{T}\dot{\varvec{ F}}\right) }_{\dot{\varvec{ E}}} {\,\mathrm d}V \\&= \int _{{\mathcal B}_0} \varvec{ S}\cdot \dot{\varvec{ E}} {\,\mathrm d}V. \end{aligned} \end{aligned}$$
(77)

The contribution of the scalar micromorphic stress \( \pi \) is transformed

$$\begin{aligned} \begin{aligned} \int _{{\mathcal B}} \pi {\,\mathrm d}v = \int _{{\mathcal B}_0} \underbrace{J \pi }_{\pi _{\mathrm {L}}} {\,\mathrm d}V = \int _{{\mathcal B}_0} \pi _{\mathrm {L}} {\,\mathrm d}V, \end{aligned} \end{aligned}$$
(78)

as well as the contribution of the vector valued micromorphic stress \( \varvec{\xi } \)

$$\begin{aligned} \begin{aligned}&\int _{{\mathcal B}} \varvec{\xi }\cdot \mathrm{grad}\left( \dot{\breve{\gamma }}_{\mathrm {ac}} \right) {\,\mathrm d}v = \int _{{\mathcal B}_0} J \varvec{\xi }\cdot \mathrm{grad}\left( \dot{\breve{\gamma }}_{\mathrm {ac}} \right) {\,\mathrm d}V \\&\qquad = \int _{{\mathcal B}_0} J \xi _i \displaystyle \frac{\displaystyle \partial \dot{\breve{\gamma }}_{\mathrm {ac}}}{\displaystyle \partial x_i} {\,\mathrm d}V = \int _{{\mathcal B}_0} J \xi _i \displaystyle \frac{\displaystyle \partial \dot{\breve{\gamma }}_{\mathrm {ac}}}{\displaystyle \partial X_j} \displaystyle \frac{\displaystyle \partial X_j}{\displaystyle \partial x_i} {\,\mathrm d}V \\&\qquad = \int _{{\mathcal B}_0} \underbrace{\left( J {\varvec{ F}}^\mathrm{-1}\varvec{\xi }\right) }_{\varvec{\xi }_{\mathrm {L}}} \cdot \mathrm{Grad}\left( \dot{\breve{\gamma }}_{\mathrm {ac}} \right) {\,\mathrm d}V \\&\qquad = \int _{{\mathcal B}_0} \varvec{\xi }_{\mathrm {L}} \cdot \mathrm{Grad}\left( \dot{\breve{\gamma }}_{\mathrm {ac}} \right) {\,\mathrm d}V. \end{aligned} \end{aligned}$$
(79)

Finally, the transformation of the internal forces on the grain boundaries, meaning the grain boundary micromorphic tractions \( {\Xi }_{\mathrm {j}} \) and  \( {\Xi }_{\mathrm {m}} \), yields

(80)

1.3 Details on the global Newton algorithm

We build the scalar product of the balance of linear momentum (cf. Eq. 15) with a trial function \( \delta \underline{w}^{u} = \underline{\underline{N}}^{u} ~\hat{\underline{w}} \) and integrate over an arbitrary volume \( {\mathcal B} \)

$$\begin{aligned} \begin{aligned} 0&= \int _{{\mathcal B}} \mathrm{div }\left( \underline{\sigma } \right) \cdot \delta \underline{w}^{u} {\,\mathrm d}v, \\ \underline{r}^{u}&= \int _{{\mathcal B}} {\underline{\underline{B}}^{u}}^\mathsf{T} \underline{\sigma } {\,\mathrm d}v - \int _{{\mathcal B}_t} {\underline{\underline{N}}^{u}}^\mathsf{T} \underline{\bar{t}} {\,\mathrm d}a. \\ \end{aligned} \end{aligned}$$
(81)

Hereby, the matrix of shape function gradients \( \underline{\underline{B}} \) was introduced. Furthermore, we use the micromorphic field equation, the grain boundary condition and the grain boundary yield condition (cf. Eqs. 15 and 37), and the trial function \( \delta w^{\gamma } = \underline{N}^{\gamma } ~\hat{\underline{w}} \)

$$\begin{aligned}&0 = \int _{{\mathcal B}} \left( \beta - \breve{p} - K_\mathrm {g} \mathrm{div }\left( \mathrm{grad}\left( \breve{\gamma }_{\mathrm {ac}} \right) \right) \right) \delta w^{\gamma } {\,\mathrm d}v, \nonumber \\&r^{\gamma } = \int _{{\mathcal B}} {\underline{N}^{\gamma }}^\mathsf{T} \left( \beta - \breve{p} \right) {\,\mathrm d}v + \int _{{\mathcal B}} {\underline{B}^{\gamma }}^\mathsf{T} K_{\mathrm {g}} \left( \underline{B}^{\gamma } \underline{\hat{\gamma }} + \underline{B}^{\delta } \underline{\hat{\delta }}\right) {\,\mathrm d}v \nonumber \\&\quad = - \int _{\partial {\mathcal B}_\mathrm {\Xi }} {\underline{N}^{\gamma }}^\mathsf{T} \bar{\mathrm {\Xi }} {\,\mathrm d}a + \int _{{\Gamma }_\mathrm {act}} \left( \tilde{{\Xi }}_{\mathrm {m}}^{\mathrm {e}} + \tilde{{\Xi }}_{\mathrm {m}}^{\mathrm {c}} \right) {\,\mathrm d}a, \end{aligned}$$
(82)

where \( {\Gamma }_\mathrm {act} \) denotes the plastically active part of the grain boundaries. By using Eqs. (15) and (37) with the trial function \( \delta w^{\delta } = \underline{N}^{\delta } ~\hat{\underline{w}} \), the shape function enrichment results in an additional equation

$$\begin{aligned} 0&= \int _{{\mathcal B}} \left( \beta - \breve{p} - K_\mathrm {g} \mathrm{div }\left( \mathrm{grad}\left( \breve{\gamma }_{\mathrm {ac}} \right) \right) \right) \delta w^{\delta } {\,\mathrm d}v, \nonumber \\ r^{\delta }&= \int _{{\mathcal B}} {\underline{N}^{\delta }}^\mathsf{T} \left( \beta - \breve{p} \right) {\,\mathrm d}v + \int _{{\mathcal B}} {\underline{B}^{\delta }}^\mathsf{T} K_{\mathrm {g}} \left( \underline{B}^{\gamma } \underline{\hat{\gamma }} + \underline{B}^{\delta } \underline{\hat{\delta }}\right) {\,\mathrm d}v \nonumber \\&= - \int _{\partial {\mathcal B}_{\Xi }} {\underline{N}^{\delta }}^\mathsf{T} \bar{{\Xi }} {\,\mathrm d}a + \int _{{\Gamma }_\mathrm {act}} \left( \tilde{{\Xi }}_{\mathrm {j}}^{\mathrm {e}} + \tilde{{\Xi }}_{\mathrm {j}}^{\mathrm {c}} \right) {\,\mathrm d}a. \end{aligned}$$
(83)

The total derivatives of Eqs. (81)–(83) read in matrix-vector notation

$$\begin{aligned} \begin{pmatrix} {\,\mathrm d}\underline{r}^{u} \\ {\,\mathrm d}r^{\gamma } \\ {\,\mathrm d}r^{\delta } \end{pmatrix} = \begin{pmatrix} \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{u}}} &{}\quad \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{u}}} &{}\quad \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{u}}}\\ \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{\gamma }}} &{}\quad \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{\gamma }}} &{}\quad \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{\gamma }}} \\ \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{\delta }}} &{}\quad \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{\delta }}} &{}\quad \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{\delta }}}\\ \end{pmatrix} \begin{pmatrix} {\,\mathrm d}\underline{\hat{u}} \\ {\,\mathrm d}\underline{\hat{\gamma }} \\ {\,\mathrm d}\underline{\hat{\delta }} \end{pmatrix}. \end{aligned}$$
(84)

The entries of the global algorithmic tangent are

$$\begin{aligned} \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{u}}}&= \int _{{\mathcal B}} {\underline{\underline{B}}^{u}}^\mathsf{T} \displaystyle \frac{\displaystyle \partial \underline{\sigma }}{\displaystyle \partial \underline{E}} \underline{\underline{B}}^{u} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{\gamma }}}&= \int _{{\mathcal B}} {\underline{\underline{B}}^{u}}^\mathsf{T} \displaystyle \frac{\displaystyle \partial \underline{\sigma }}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \underline{N}^{\gamma } {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial \underline{r}^{u}}{\displaystyle \partial \underline{\hat{\delta }}}&= \int _{{\mathcal B}} {\underline{\underline{B}}^{u}}^\mathsf{T} \displaystyle \frac{\displaystyle \partial \underline{\sigma }}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \underline{N}^{\delta } {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{u}}}&= \int _{{\mathcal B}} {\underline{N}^{\gamma }}^\mathsf{T} \left( - \displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \underline{E}} \right) \underline{\underline{B}}^{u} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{\gamma }}}&= \int _{{\mathcal B}} {\underline{N}^{\gamma }}^\mathsf{T} \underline{N}^{\gamma } \left( \displaystyle \frac{\displaystyle \partial \beta }{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} -\displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \right) {\,\mathrm d}v\nonumber \\&\quad +\,\int _{{\mathcal B}} {\underline{B}^{\gamma }}^\mathsf{T} \underline{B}^{\gamma } K_\mathrm {g} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\gamma }}}{\displaystyle \partial \underline{\hat{\delta }}}&= \int _{{\mathcal B}} {\underline{N}^{\gamma }}^\mathsf{T} \underline{N}^{\delta } \left( \displaystyle \frac{\displaystyle \partial \beta }{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} -\displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \right) {\,\mathrm d}v\nonumber \\&\quad +\,\int _{{\mathcal B}} {\underline{B}^{\gamma }}^\mathsf{T} \underline{B}^{\delta } K_\mathrm {g} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{u}}}&= \int _{{\mathcal B}} {\underline{N}^{\delta }}^\mathsf{T} \left( - \displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \underline{E}} \right) \underline{\underline{B}}^{u} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{\gamma }}}&= \int _{{\mathcal B}} {\underline{N}^{\delta }}^\mathsf{T} \underline{N}^{\gamma } \left( \displaystyle \frac{\displaystyle \partial \beta }{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} -\displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \right) {\,\mathrm d}v\nonumber \\&\quad +\,\int _{{\mathcal B}} {\underline{B}^{\delta }}^\mathsf{T} \underline{B}^{\gamma } K_\mathrm {g} {\,\mathrm d}v, \nonumber \\ \displaystyle \frac{\displaystyle \partial {r^{\delta }}}{\displaystyle \partial \underline{\hat{\delta }}}&= \int _{{\mathcal B}} {\underline{N}^{\delta }}^\mathsf{T} \underline{N}^{\delta } \left( \displaystyle \frac{\displaystyle \partial \beta }{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} -\displaystyle \frac{\displaystyle \partial \breve{p}}{\displaystyle \partial \breve{\gamma }_{\mathrm {ac}}} \right) {\,\mathrm d}v\nonumber \\&\quad +\,\int _{{\mathcal B}} {\underline{B}^{\delta }}^\mathsf{T} \underline{B}^{\delta } K_\mathrm {g} {\,\mathrm d}v. \end{aligned}$$
(85)
Fig. 13
figure 13

Convergence study for a varying mesh discretization of the crystalline structure. A good compromise of the computational time and the accuracy of the results is given for a finite element mesh with about 6 \(\times \) \(10^4\) DOF

1.4 Details on the convergence

In Fig. 13 the results of the convergence study are shown. The loading case as well as the material parameters were chosen in the manner of the comparison to the analytical solution with a grain rotation angle of \( \varphi _{x}=45\,\mathrm{^{\circ }} \). Hereby, the mesh discretization was varied by using 400, 600, 800, 1000 and 1200 Elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdle, H., Böhlke, T. A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip. Comput Mech 60, 923–942 (2017). https://doi.org/10.1007/s00466-017-1447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1447-7

Keywords

Navigation