Skip to main content
Log in

A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  2. Oliver J (1995) Continuum modelling of strong discontinuities in solid mechanics using damage models. Comput Mech 17:49–61

    Article  MATH  Google Scholar 

  3. Henshell RD, Shaw KG (1975) Crack tip elements are unnecessary. Int J Numer Methods Eng 9:1727–1742

    Article  MATH  Google Scholar 

  4. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24:581–597

    Article  MATH  Google Scholar 

  5. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321–334

    Article  Google Scholar 

  6. Colombo D, Giglio M (2006) A methodology for automatic crack propagation modelling in planar and shell fe models. Eng Fract Mech 73:490–504

    Article  Google Scholar 

  7. Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81:119–129

    Article  Google Scholar 

  8. Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71:1466–1482

    Article  MathSciNet  MATH  Google Scholar 

  9. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  10. Nguyen-Xuan H, Liu GR, Nourbakhshnia N, Chen L (2012) A novel singular ES-FEM for crack growth simulation. Eng Fract Mech 84:41–66

    Article  Google Scholar 

  11. Pierard O, Jin Y, Wyart E, Dompierre B, Bechet E (2016) Simulation of contact on crack lips and its influence on fatigue life prediction. In: Carpintieri A, Fatemi A, Navarro C (eds) International Conference on Multiaxial Fatigue and Fracture, ICMFF11, Seville. Fracture and structural integrity

  12. Alfaiate J, Wells GN, Sluys LJ (2002) On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech 69:661–686

    Article  Google Scholar 

  13. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  14. Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94:1099–1122

    Article  MathSciNet  Google Scholar 

  15. Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with \(r-\)adaptive mesh alignment. Int J Numer Methods Eng 72:127–155

    Article  MathSciNet  MATH  Google Scholar 

  16. Duflot M, Nguyen-Dang H (2004) A meshless method with enriched weight functions for fatigue. Int J Numer Methods Eng 59:1945–1961

    Article  MATH  Google Scholar 

  17. Barbieri E, Petrinic N (2014) Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Comput Mech 53(2):325–342

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng X, Atroshchenko E, Kerfriden P, Bordas SPA (2016) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng (in press)

  19. Paulus CJ, Untereiner L, Courtecuisse H, Cotin S, Cazier D (2015) Virtual cutting of deformable objects based on efficient topological operations. Vis Comput 31:831–841

    Article  Google Scholar 

  20. Bouchard PO, Bay F, Chastel Y (2003) Numerical modeling of crack propagation—implementation, techniques and comparison of different criteria. Comp Methods Appl Mech Eng 192(35–36):3887–3908

    Article  MATH  Google Scholar 

  21. El Khaoulani R, Bouchard PO (2012) An anisotropic mesh adaptation strategy for damage and failure in ductile materials. Finite Elem Anal Des 59:1–10

    Article  MathSciNet  Google Scholar 

  22. Teng X, Wierzbicki T (2006) Evaluation of six fracture models in high velocity perforation. Eng Fract Mech 73:1653–1678

    Article  Google Scholar 

  23. Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28:461–474

    Article  MATH  Google Scholar 

  24. Etse G, Willam K (1999) Failure analysis of elastoviscoplastic material models. J Eng Mech 125:60–69

    Article  Google Scholar 

  25. Schreyer HL, Chen Z (1986) One-dimensional softening with localization. J Appl Mech 53:791–797

    Article  Google Scholar 

  26. Areias P. Simplas. http://home.uevora.pt/~pmaa/SimplasWebsite/Simplas.html

  27. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  28. Fetter AL, Walecka JD (2003) Theoretical mechanics of particles and continua. Courier Dover, New York

    MATH  Google Scholar 

  29. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, New York

    Google Scholar 

  30. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse de Doctorat d’Etat, Université Paris VI, Paris

  31. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403

    Article  MATH  Google Scholar 

  32. Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary bi-dimensional finite strain cohesive crack propagation. Comput Mech 45(1):61–75

  33. Areias PMA, César de Sá JMA, Conceição CA (2003) A gradient model for finite strain elastoplasticity coupled with damage. Finite Elem Anal Des 39:1191–1235

    Article  Google Scholar 

  34. de Borst R, Pamin J, Geers MGD (1999) On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur J Mech A 18:939–962

    Article  MATH  Google Scholar 

  35. Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ (1998) Strain-based transient-gradient damage model for failure analysis. Comput Methods Appl Mech Eng 160:133–153

    Article  MATH  Google Scholar 

  36. Wolfram Research Inc. Mathematica (2007)

  37. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327

    Article  Google Scholar 

  38. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  39. Frey PJ, George P-L (2000) Mesh generation: application to finite elements. Hermes Science, Oxford

    MATH  Google Scholar 

  40. Areias P, Garção J, Pires EB, Barbosa JI (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48:385–406

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und bew. Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton. PhD thesis, University of Innsbruck, Innrain 52, 6020 Innsbruck

  42. Most T, Bucher C (2006) Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization. Int J Numer Anal Met 31:285–305

  43. Dumstorff P, Meschke G (2007) Crack propagation criteria. Int J Numer Anal Met 31:239–259

    Article  MATH  Google Scholar 

  44. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Bas Eng 85:519–527

    Article  Google Scholar 

  45. Areias P, Msekh MA, Rabczuk T (2016) Damage and fracture algorithm using the screened poisson equation and local remeshing. Eng Fract Mech 158:116–143

    Article  Google Scholar 

  46. Carol I, Prat PC, López CM (1997) Normal/shear cracking model: application to discrete crack analysis. J Eng Mech 123:765–773

    Article  Google Scholar 

  47. Schlangen E (1993) Experimental and numerical analysis of fracture processes in concrete. PhD thesis, Delft

  48. Alfaiate J, Simone A, Sluys LJ (2003) A new approach to strong embedded discontinuities. In: Bicanic N, de Borst R, Mang H, Meschke G (eds) Computational Modelling of Concrete Structures, EURO-C 2003. St. Johann im Pongau

  49. Areias PMA, César de Sá JMA, Conceição António CA, Carneiro JASAO, Teixeira VMP (2004) Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems. Comput Mech 35:54–71

    Article  MATH  Google Scholar 

  50. Dias-da-Costa D, Alfaiate J, Sluys LJ, Júlio E (2009) A discrete strong discontinuity approach. Eng Fract Mech 76(9):1176–1201

    Article  MATH  Google Scholar 

  51. Arrea M, Ingraffea RA (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report Report 81-13, Cornell University, Department of Structural Engineering

  52. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788

    Article  MATH  Google Scholar 

  53. Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of concrete. Int J Solids Struct 27(9):1139–1153

    Article  Google Scholar 

  54. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  MATH  Google Scholar 

  55. Ruprecht D, Müller H (1998) A scheme for edge-based adaptive tetrahedron subdivision. In: Hege H-C, Polthier K (eds) Mathematical visualization: algorithms., Applications and numericsSpringer, Berlin, pp 61–70

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areias, P., Rabczuk, T. & de Sá, J.C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Comput Mech 58, 1003–1018 (2016). https://doi.org/10.1007/s00466-016-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1328-5

Keywords

Navigation