Skip to main content
Log in

Quasi-static crack propagation with a Griffith criterion using a variational discrete element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A variational discrete element method is applied to simulate quasi-static crack propagation. Cracks are considered to propagate between the mesh cells through the mesh facets. The elastic behaviour is parametrized by the continuous mechanical parameters (Young modulus and Poisson ratio). A discrete energetic cracking criterion coupled to a discrete kinking criterion guide the cracking process. Two-dimensional numerical examples are presented to illustrate the robustness and versatility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. https://github.com/marazzaf/DEM_cracking.git.

  2. https://scipy.org/.

References

  1. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  Google Scholar 

  2. André D, Girardot J, Hubert C (2019) A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model. Comput Methods Appl Mech Eng 350:100–122

    Article  MathSciNet  Google Scholar 

  3. André D, Jebahi M, Iordanoff I, Charles J-L, Néauport J (2013) Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter. Comput Methods Appl Mech Eng 265:136–147

    Article  Google Scholar 

  4. Arnold D (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19(4):742–760

    Article  MathSciNet  Google Scholar 

  5. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  6. Borden M, Verhoosel C, Scott M, Hughes T, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  Google Scholar 

  7. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  Google Scholar 

  8. Celigueta MA, Latorre S, Arrufat F, Oñate E (2017) Accurate modelling of the elastic behavior of a continuum with the discrete element method. Comput Mech 60(6):997–1010

    Article  MathSciNet  Google Scholar 

  9. Chahine E, Laborde P, Renard Y (2008) Crack tip enrichment in the XFEM using a cutoff function. Int J Numer Methods Eng 75(6):629–646

    Article  MathSciNet  Google Scholar 

  10. Dal Maso G (2013) Generalised functions of bounded deformation. J Eur Math Soc 15(5):1943–1997

    Article  MathSciNet  Google Scholar 

  11. Di Pietro DA (2012) Cell centered Galerkin methods for diffusive problems. ESAIM M2AN 46(1):111–144

    Article  MathSciNet  Google Scholar 

  12. Di Pietro DA, Ern A (2011) Mathematical aspects of discontinuous Galerkin methods, vol 69. Springer, Berlin

    MATH  Google Scholar 

  13. Eymard R, Gallouët T, Herbin R (2009) Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J Numer Anal 30(4):1009–1043

    Article  MathSciNet  Google Scholar 

  14. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  Google Scholar 

  15. Hansbo P, Salomonsson K (2015) A discontinuous Galerkin method for cohesive zone modelling. Finite Elem Anal Des 102:1–6

    Article  MathSciNet  Google Scholar 

  16. Hildebrandt K, Polthier K, Wardetzky M (2006) On the convergence of metric and geometric properties of polyhedral surfaces. Geom Dedic 123(1):89–112

    Article  MathSciNet  Google Scholar 

  17. Hussein A, Hudobivnik B, Aldakheel F, Wriggers P, Guidault P-A, Allix O (2018) A virtual element method for crack propagation. PAMM 18(1):e201800104

    Article  Google Scholar 

  18. Jebahi M, André D, Terreros I, Iordanoff I (2015) Discrete element method to model 3D continuous materials. Wiley, Hoboken

    Book  Google Scholar 

  19. Kuna M (2013) Finite elements in fracture mechanics. Springer, Berlin

    Book  Google Scholar 

  20. Labra C, Oñate E (2009) High-density sphere packing for discrete element method simulations. Commun Numer Methods Eng 25(7):837–849

    Article  MathSciNet  Google Scholar 

  21. Li T, Marigo J-J, Guilbaud D, Potapov S (2016) Numerical investigation of dynamic brittle fracture via gradient damage models. Adv Model Simul Eng Sci 3(1):26

    Article  Google Scholar 

  22. Logg A, Mardal K-A, Wells GN et al (2012) Automated solution of differential equations by the finite element method. Springer, Berlin

    Book  Google Scholar 

  23. Marazzato F, Ern A, Monasse L (2020) A variational discrete element method for quasistatic and dynamic elastoplasticity. Int J Numer Methods Eng 121(23):5295–5319

    Article  MathSciNet  Google Scholar 

  24. Mariotti C, Michaut V, Molinari J-F (2009) Modeling of the fragmentation by discrete element method. In: DYMAT 2009 9th international conference on mechanical and physical behaviour of materials under dynamic loading. pp 1523–1528

  25. Moës N, Belytschko T (2002) X-FEM, de nouvelles frontières pour les éléments finis. Rev Eur Elém 11(2–4):305–318

    MATH  Google Scholar 

  26. Monasse L, Mariotti C (2012) An energy-preserving discrete element method for elastodynamics. ESAIM M2AN 45:1527–1553

    Article  MathSciNet  Google Scholar 

  27. Muixí A, Rodríguez-Ferran A, Fernández-Méndez S (2020) A hybridizable discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement. Int J Numer Methods Eng 121(6):1147–1169

    Article  MathSciNet  Google Scholar 

  28. Romon P (2013) Introduction à la géométrie différentielle discrète. Ellipses

  29. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  30. Simon L (1983) Lectures on geometric measure theory. In: Proceedings of the centre for mathematical analysis, vol 3. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra

  31. Spellings M, Marson RL, Anderson JA, Glotzer SC (2017) GPU accelerated discrete element method (DEM) molecular dynamics for conservative, faceted particle simulations. J Comput Phys 334:460–467

    Article  MathSciNet  Google Scholar 

  32. Sukumar N, Moran B, Black T, Belytschko T (1997) An element-free Galerkin method for three-dimensional fracture mechanics. Comput Mech 20(1–2):170–175

    Article  Google Scholar 

  33. Zárate F, Cornejo A, Oñate E (2018) A three-dimensional FEM–DEM technique for predicting the evolution of fracture in geomaterials and concrete. Comput Part Mech 5(3):411–420

    Article  Google Scholar 

  34. Zárate F, Oñate E (2015) A simple FEM–DEM technique for fracture prediction in materials and structures. Comput Part Mech 2(3):301–314

    Article  Google Scholar 

Download references

Acknowledgements

Partial support by CEA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marazzato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marazzato, F., Ern, A. & Monasse, L. Quasi-static crack propagation with a Griffith criterion using a variational discrete element method. Comput Mech 69, 527–539 (2022). https://doi.org/10.1007/s00466-021-02102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02102-5

Keywords

Navigation