Skip to main content
Log in

A constitutive-based element-by-element crack propagation algorithm with local mesh refinement

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the context of multiple constitutive models, multiple finite element formulations and crack nucleation and propagation hypotheses, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D models which is independent of the constitutive and element specific technology. Observed phenomena such as multiple crack growth and shielding emerge naturally, without specialized algorithms for calculating the crack growth direction. The algorithm consists of a sequence of mesh subdivision, mesh smoothing and element erosion steps. Element subdivision is based on the classical edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity (such as void fraction or principal stress). To assess the robustness and accuracy of this algorithm, we use classical quasi-brittle benchmarks and ductile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. No power-consistent closed-form solution exists for the effective plastic strain in the classical Gurson model.

  2. Note that properties have been fitted so that intersections in p and q axes for both models coincide at \(f=f_{c}.\)

    Fig. 22
    figure 22

    Effective plastic strain and void nucleation and growth in the GTN and Rousselier models

    Fig. 23
    figure 23

    Aluminum specimen, GTN and Rousselier models with remeshing, mesh size sensitivity: effective plastic strain, void fraction and reaction-displacement results. Step size \(\Delta \overline{v}=0.09\) mm. Experimental data reported by Malcher et al. [31]

References

  1. Alfaiate J, Wells GN, Sluys LJ (2002) On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech 69:661–686

    Article  Google Scholar 

  2. Alfaiate J, Simone A, Sluys LJ (2003) A new approach to strong embedded discontinuities. In: Bicanic N, de Borst R, Mang H, Meschke G (eds) Computational modelling of concrete structures, EURO-C 2003, St. Johann im Pongau, Salzburger Land, Austria

  3. Areias P SIMPLAS. http://www.simplas-software.com. Accessed 1 Jan 2015

  4. Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94:1099–1122

    Article  MathSciNet  Google Scholar 

  5. Areias P, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682

    Article  MATH  Google Scholar 

  6. Areias P, César de Sá JMA, Conceição António CA, Carneiro JASAO, Teixeira VMP (2004) Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems. Comput Mech 35:54–71

    Article  MATH  Google Scholar 

  7. Areias P, Van Goethem N, Pires EB (2011) A damage model for ductile crack initiation and propagation. Comput Mech 47(6):641–656

    Article  MathSciNet  Google Scholar 

  8. Areias P, Dias-da-Costa D, Pires EB, Infante Barbosa J (2012) A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput Mech 49:545–564

    Article  MathSciNet  MATH  Google Scholar 

  9. Areias P, Dias-da Costa D, Sargado JM, Rabczuk T (2013) Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Comput Mech 52:1429–1443

    Article  MATH  Google Scholar 

  10. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo XXI(IV):337–344

    Article  MathSciNet  Google Scholar 

  11. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096

    Article  MATH  Google Scholar 

  12. Barpi F, Valente S (2000) Numerical simulation of prenotched gravity dam models. J Eng Mech ASCE 126(6):611–619

    Article  Google Scholar 

  13. Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  14. Bittencourt TN, Ingraffea AR, Wawrzynek PA, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321–334

    Article  Google Scholar 

  15. Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of concrete. Int J Solids Struct 27(9):1139–1153

    Article  Google Scholar 

  16. Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed complementarity problems. Comput Optim Appl 5:97–138

    Article  MathSciNet  MATH  Google Scholar 

  17. Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Mater Process Technol 102:249–256

    Article  Google Scholar 

  18. Colombo D, Giglio M (2006) A methodology for automatic crack propagation modelling in planar and shell FE models. Eng Fract Mech 73:490–504

    Article  Google Scholar 

  19. Dias-da-Costa D, Alfaiate J, Sluys LJ, Júlio E (2009) A discrete strong discontinuity approach. Eng Fract Mech 76(9):1176–1201

    Article  MATH  Google Scholar 

  20. Dias-da Costa D, Alfaiate J, Sluys LJ, Areias P, Júlio E (2013) An embedded formulation with conforming finite elements to capture strong discontinuities. Int J Numer Methods Eng 93(2):224–244

    Article  Google Scholar 

  21. Etse G, Willam K (1999) Failure analysis of elastoviscoplastic material models. J Eng Mech ASCE 125:60–69

    Article  MATH  Google Scholar 

  22. Frey PJ, George P-L (2000) Mesh Generation: application to finite elements. Hermes Science, Oxford

    Google Scholar 

  23. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  24. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  25. Henshell RD, Shaw KG (1975) Crack tip elements are unnecessary. Int J Numer Methods Eng 9:1727–1742

    Article  Google Scholar 

  26. Hughes TJR (1987) The finite element method. Dover Publications, 2000. Reprint of Prentice-Hall edition, New York

  27. Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81:119–129

    Article  Google Scholar 

  28. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327

    Article  Google Scholar 

  29. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71:1466–1482

    Article  MathSciNet  MATH  Google Scholar 

  31. Malcher L, Andrade Pires FM, César de Sá JMA (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30–31:81–115

    Article  Google Scholar 

  32. Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with \(r\)-adaptive mesh alignment. Int J Numer Methods Eng 72:127–155

    Article  MATH  Google Scholar 

  33. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  34. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  Google Scholar 

  35. Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A 27:1–17

    Article  MATH  Google Scholar 

  36. Nahshon K, Xue Z (2009) A modified Gurson model and its application to punch-out experiments. Eng Fract Mech 76:997–1009

    Article  Google Scholar 

  37. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola

    Google Scholar 

  38. Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28:461–474

    Article  MATH  Google Scholar 

  39. Oliver J (1995) Continuum modelling of strong discontinuities in solid mechanics using damage models. Comput Mech 17:49–61

    Article  MATH  Google Scholar 

  40. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    Article  MATH  Google Scholar 

  41. Reis FJP, Malcher L, Andrade Pires FM, César de Sá JMA (2010) A comparison of shear mechanics for the shear mechanisms for the prediction of ductile failure under low stress triaxiality. Int J Struct Integr 1(4):314–331

    Article  Google Scholar 

  42. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  43. Schlangen E (1993) Experimental and numerical analysis of fracture processes in concrete. PhD Thesis, Delft

  44. Schreyer HL, Chen Z (1986) One-dimensional softening with localization. J Appl Mech ASME 53:791–797

    Article  Google Scholar 

  45. Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York (Corrected Second Printing edition)

  46. Teng X, Wierzbicki T (2006) Evaluation of six fracture models in high velocity perforation. Eng Fract Mech 73:1653–1678

    Article  MATH  Google Scholar 

  47. Tvergaard V, Needleman A (1984) Analysis of cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  48. Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014)

  49. Xu H, Newman TS (2006) An angle-based optimization approach for \(2d\) finite element mesh smoothing. Finite Elem Anal Des 42:1150–1164

    Article  MathSciNet  Google Scholar 

  50. Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Additional information

P. Areias: Researcher ID: A-8849-2013

http://www.researcherid.com/rid/A-8849-2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areias, P., Reinoso, J., Camanho, P. et al. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Comput Mech 56, 291–315 (2015). https://doi.org/10.1007/s00466-015-1172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1172-z

Keywords

Navigation