Skip to main content
Log in

Error analysis for momentum conservation in Atomic-Continuum Coupled Model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Atomic-Continuum Coupled Model (ACCM) is a multiscale computation model proposed by Xiang et al. (in IOP conference series materials science and engineering, 2010), which is used to study and simulate dynamics and thermal–mechanical coupling behavior of crystal materials, especially metallic crystals. In this paper, we construct a set of interpolation basis functions for the common BCC and FCC lattices, respectively, implementing the computation of ACCM. Based on this interpolation approximation, we give a rigorous mathematical analysis of the error of momentum conservation equation introduced by ACCM, and derive a sequence of inequalities that bound the error. Numerical experiment is carried out to verify our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Admal NC, Tadmor EB (2010) A unified interpretation of stress in molecular systems. J Elasticity 100(1–2):63–143

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods. Texts in applied mathematics, vol 15. Springer, New York

  3. Delph TJ (2005) Conservation laws for multibody interatomic potentials. Model Simul Mater Sci Eng 13(4):585–594

    Article  Google Scholar 

  4. Han T, Cui J, Yu X, Yang Y (2015) A local Quantum-Atomistic-Continuum model for mechanical behaviors at micro-nano scale. Comput Mater Sci 109:312–322

    Article  Google Scholar 

  5. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc A 106(738):463–477

  6. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    MATH  Google Scholar 

  7. Li B, Cui J, Tian X, Yu X, Xiang M (2014) The calculation of mechanical behavior for metallic devices at nano-scale based on Atomic-Continuum Coupled model. Comput Mater Sci 94:73–84

    Article  Google Scholar 

  8. Miller RE, Tadmor EB (2002) The quasicontinuum method: overview, applications and current directions. J Comput Aided Mater Des 9(3):203–239

  9. Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):R5893–R5896

    Article  Google Scholar 

  10. Tadmor EB, Miller RE (2011) Modeling materials, continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  11. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  Google Scholar 

  12. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274

    Article  MATH  Google Scholar 

  13. Weinan E, Engquist B (2003) The heterogenous multiscale methods. Commun Math Sci 1(1):87–132

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiang M, Cui J, Tian X (2010) A nonlocal continuum model based on atomistic model at zero temperature. In: IOP conference series materials science and engineering, vol 10, p 012070

  15. Xiang M, Cui J, Li B, Tian X (2012) Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales. Sci China Phys Mech Astron 55(6):1125–1137

    Article  Google Scholar 

  16. Zimmerman JA, Webb EB III, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12(4):S319–S332

Download references

Acknowledgments

This work is partially supported by the National Basic Research Program of China (973 Program No. 2012CB025904) and the National Natural Science Foundation of China (Grant No. 11102221). It is also supported by the State Key Laboratory of Science and Engineering Computing (LSEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Yang.

Appendices

Appendix 1: Calculation of deformation gradient for FCC cell

Here we discuss computational expressions for continuous deformation field and deformation gradient when FCC cubic cell (hereinafter referred to as FCC cell) is used as basic deformation element.

Consider the standard cube \({\mathscr {Q}}=[-1,1]^3\). Corresponding to FCC cell, the 8 vertexes are denoted by \(P_1,\ldots ,P_8\), and the 6 face center points are denoted by \(P_9,\ldots ,P_{14}\) (as shown in Fig. 5).

Fig. 5
figure 5

Standard cube corresponding to FCC Cell

Denote the coordinate of \(P_i\) by \((p_{i1},p_{i2},p_{i3})\quad (i=1,\ldots ,14)\), then

$$\begin{aligned}&(p_{i1},p_{i2},p_{i3})\nonumber \\&\quad = {\left\{ \begin{array}{ll} (\pm 1,\pm 1,\pm 1) &{} i=1,\ldots ,8 \\ (\pm 1,0,0),(0,\pm 1,0) \text { or } (0,0,\pm 1) &{} p=9,\ldots ,14 \end{array}\right. }\nonumber \\ \end{aligned}$$
(54)

For \({\xi }=(\xi _1,\xi _2,\xi _3)\in {\mathscr {Q}}\), let

$$\begin{aligned}&\phi _i(\xi _1,\xi _2,\xi _3)= {\left\{ \begin{array}{ll} \frac{1}{8}{\prod }_{j=1}^3(1+p_{ij}\xi _j)- \frac{1}{8}\sum _{k=1}^3{\prod }_{j=1}^3(1-\xi _j^2)/(1-p_{ik}\xi _k) &{} \quad i = 1,\ldots ,8\\ \frac{1}{2}{\prod }_{j=1}^3(1-\xi _j^2)/{\prod }_{j=1}^3(1+p_{ij}\xi _j) &{}\quad i = 9,\ldots ,14 \end{array}\right. } \end{aligned}$$
(55)

then

$$\begin{aligned} \phi _i(P_j)=\delta _{ij}= {\left\{ \begin{array}{ll} 1 &{} i=j\\ 0 &{} i\ne j \end{array}\right. } \quad (i,j=1,\ldots ,14) \end{aligned}$$
(56)

Thus, \({\phi _1,\ldots ,\phi _{14}}\) are linearly independent, and they constitute a set of interpolation basis functions on \({\mathscr {Q}}\).

Fig. 6
figure 6

Affine transformation from \(\varOmega _r\) to \({\mathscr {Q}}\)

For any function \(u(\xi _1,\xi _2,\xi _3)\) on \({\mathscr {Q}}\), define the interpolation operator \({\mathscr {I}}\) as

$$\begin{aligned} {\mathscr {I}}u(\xi )=\sum _{i=1}^{14} u(P_i)\phi _i(\xi ). \end{aligned}$$
(57)

Just like in the BCC case, \({\mathscr {I}}\) keeps first-degree polynomials unchanged.

Now suppose that \(\varOmega _r\) is a FCC cell with edge length 2h, and the volume center of the cell is at \(X^C\). Then we have an affine transformation T that maps \(\varOmega _r\) to the standard cube \({\mathscr {Q}}\) (as shown in Fig. 6):

$$\begin{aligned} \xi =T(X)=\frac{X-X^C}{h}. \end{aligned}$$
(58)

For any function f(X) on \(\varOmega _r\), define the interpolation operator \({\mathscr {I}}_h\) as

$$\begin{aligned} {\mathscr {I}}_h f(X)= & {} \sum _{i=1}^{14} f(T^{-1}(P_i))\phi _i(T(X))\nonumber \\= & {} \sum _{i=1}^{14} f(X_i)\phi _i\left( \frac{X-X^C}{h}\right) , \end{aligned}$$
(59)

where \(X_i (i=1,\ldots ,14)\) are the undeformed positions of the 14 atoms in the cell.

Using \({\mathscr {I}}_h\), the deformed position \(x=R(X)\) of any \(X\in \varOmega _r\) can be expressed by the deformed positions of the lattice points \(x_i (i=1,\ldots ,14)\):

$$\begin{aligned} {\mathscr {I}}_hR(X)= & {} \sum _{i=1}^{14} R(X_i)\phi _i\left( \frac{X-X^C}{h}\right) \nonumber \\= & {} \sum _{i=1}^{14} x_i\phi _i\left( \frac{X-X^C}{h}\right) . \end{aligned}$$
(60)

Furthermore, the deformation gradient at X can be approximately expressed as

$$\begin{aligned} \tilde{F}(X) =\frac{\partial {\mathscr {I}}_hR(X)}{\partial X} =\sum _{i=1}^{14} \frac{x_i}{h}\otimes \nabla \phi _i\left( \frac{X-X^C}{h}\right) . \end{aligned}$$
(61)

Appendix 2: Detailed derivation of error estimate

Using Eq. (38) we have

$$\begin{aligned}&\left| \int _{\varOmega _r}\left( \nabla \cdot {P}(X)- \nabla \cdot \tilde{P}(X)\right) {{\mathrm{d}}}X \right| \nonumber \\&\quad \le \frac{1}{V_r}\sum _{\alpha }\sum _{\beta \not =\alpha } \eta _{\alpha }\int _{0}^{1} \left| \int _{\varOmega _r}\nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) \right. \right. \nonumber \\&\quad \left. \left. \quad -\, \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) {{\mathrm{d}}}X\right| {{\mathrm{d}}}s\cdot \left| R_{\alpha \beta } \right| \nonumber \\&\quad \le \frac{4h}{V_r}\sum _{\alpha }\sum _{\beta \not =\alpha } \eta _{\alpha }\int _{0}^{1} \int _{\varOmega _r}\left| \nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) \right. \right. \nonumber \\&\quad \left. \left. \quad -\, \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) \right| {{\mathrm{d}}}X{{\mathrm{d}}}s. \end{aligned}$$
(62)

Hence the error

$$\begin{aligned} \left| \int _{\varOmega _r}\left( \nabla \cdot {P}(X)- \nabla \cdot \tilde{P}(X)\right) {{\mathrm{d}}}X \right| \end{aligned}$$
(63)

is determined by

$$\begin{aligned} \int _{\varOmega _r}\left| \nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) \right| {{\mathrm{d}}}X. \end{aligned}$$
(64)

Notice that

$$\begin{aligned}&\nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) \right) = \frac{\partial }{\partial X_j}\frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}} \left( {I}_{\alpha \beta }(X,s)\right) e_ie_j \nonumber \\&\quad = \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} e_ie_j, \end{aligned}$$
(65)

where the Einstein summation convention is assumed for repeated indices ijk, and \(e_i (i=1,2,3)\) is the natural basis of \({\mathbb {R}}^3\).

In the same way

$$\begin{aligned}&\nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \right) \nonumber \\&\quad = \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} e_ie_j. \end{aligned}$$
(66)

Combining Eqs. (65) and (66) it follows that

$$\begin{aligned}&\left| \nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) \right| \nonumber \\&\quad \le \sum _{i,j=1}^3 \left| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right. \nonumber \\&\left. \qquad - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right| , \end{aligned}$$
(67)

hence the expression (64) is determined by

$$\begin{aligned} ER_{ij}&:= \int _{\varOmega _r} \left| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right. \nonumber \\&\left. \quad - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j}\right| {{\mathrm{d}}}X\nonumber \\&= \left\| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right. \nonumber \\&\left. \quad - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r}. \end{aligned}$$
(68)

Owing to

$$\begin{aligned}&\frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \nonumber \\&\quad \quad - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \nonumber \\&\quad = \left[ \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \right. \nonumber \\&\left. \qquad - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \right] \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \nonumber \\&\qquad + \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \left[ \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right] , \end{aligned}$$
(69)

we have

(70)

Let us first estimate

$$\begin{aligned} \left\| \left[ \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \right] \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r}. \end{aligned}$$
(71)

Due to the mean value theorem, there exists \(Y\in {\mathbb {R}}^3\) such that

$$\begin{aligned}&\frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \nonumber \\&\quad = \nabla _{r_{\alpha \beta }} \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}}(Y)\cdot \left( {I}_{\alpha \beta }(X,s)- \tilde{I}_{\alpha \beta }(X,s) \right) \nonumber \\&\quad = \frac{\partial ^3 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}\partial r_{\alpha \beta }^{(m)}}(Y) \left( {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right) , \end{aligned}$$
(72)

where Y can be written as

$$\begin{aligned} Y=\lambda I_{\alpha \beta }(X,s)+(1-\lambda )\tilde{I}_{\alpha \beta }(X,s)\quad (0\le \lambda \le 1). \end{aligned}$$
(73)

Let

$$\begin{aligned} M_3= \max _{\begin{array}{c} i,j,k=1,2,3 \\ \alpha \not =\beta ,Y\in {\mathbb {R}}^3 \end{array}} \left| \frac{\partial ^3 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(j)}\partial r_{\alpha \beta }^{(k)}}(Y) \right| , \end{aligned}$$
(74)

using Eq. (72) and Cauchy–Schwarz inequality we have

$$\begin{aligned}&\left\| \left[ \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \right] \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r} \nonumber \\&\quad = \left\| \frac{\partial ^3 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}\partial r_{\alpha \beta }^{(m)}}(Y) \left( {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r}\nonumber \\&\quad \le M_3 \sum _{m,k=1}^3 \left\| \left( {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r}\nonumber \\&\quad \le M_3 \sum _{m=1}^3 \left\| {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right\| _{2,\varOmega _r} \sum _{k=1}^3 \left\| \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{2,\varOmega _r}. \end{aligned}$$
(75)

Moreover

$$\begin{aligned}&\left\| {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right\| _{2,\varOmega _r}\nonumber \\&\quad = \left\| \int _{0}^{1}F_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)}{{\mathrm{d}}}s'\right. \nonumber \\&\left. \qquad - \int _{0}^{1}\tilde{F}_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)}{{\mathrm{d}}}s' \right\| _{2,\varOmega _r} \nonumber \\&\quad = \left\| \int _{0}^{1} \left[ F_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)} \right. \right. \nonumber \\&\left. \left. \qquad - \tilde{F}_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)} \right] {{\mathrm{d}}}s' \right\| _{2,\varOmega _r}\nonumber \\&\quad \le \int _{0}^{1} \left\| F_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)} \right. \nonumber \\&\left. \qquad - \tilde{F}_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(n)} \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'\nonumber \\&\quad \le 2h \sum _{n=1}^3\int _{0}^{1} \left\| F_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) \right. \nonumber \\&\left. \qquad - \tilde{F}_{mn}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'\nonumber \\&\quad = 2h \sum _{n=1}^3\int _{0}^{1} \left\| \frac{\partial }{\partial X_n} R^{(m)}\left( X+(s'-s)R_{\alpha \beta }\right) \right. \nonumber \\&\left. \qquad - \frac{\partial }{\partial X_n} {\mathscr {I}}_hR^{(m)}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'. \end{aligned}$$
(76)

Notice that the interpolation operator \({\mathscr {I}}_h\) keeps first-degree polynomials unchanged, thanks to error analysis theory of finite element methods [2], we have

(77)

where C is a constant independent of h(we denote by C the irrelevant constants hereinafter). Thus

$$\begin{aligned}&\left\| {I}_{\alpha \beta }^{(m)}(X,s)- \tilde{I}_{\alpha \beta }^{(m)}(X,s) \right\| _{2,\varOmega _r} \nonumber \\&\quad \le Ch^2 \int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s'. \end{aligned}$$
(78)

Furthermore

$$\begin{aligned}&\left\| \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{2,\varOmega _r} \nonumber \\&\quad = \left\| \frac{\partial }{\partial X_j} \int _{0}^{1}F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)}{{\mathrm{d}}}s' \right\| _{2,\varOmega _r}\nonumber \\&\quad = \left\| \int _{0}^{1}\frac{\partial }{\partial X_j}F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)}{{\mathrm{d}}}s' \right\| _{2,\varOmega _r}\nonumber \\&\quad \le \int _{0}^{1}\left\| \frac{\partial }{\partial X_j}F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)} \right\| _{2,\varOmega _r}{{\mathrm{d}}}s'\nonumber \\&\quad \le 2h\int _{0}^{1}\left\| \frac{\partial }{\partial X_j}F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s' \nonumber \\&\quad \le 2h\int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s'. \end{aligned}$$
(79)

Combining inequalities (75), (78) and (79) yields

(80)

Next we estimate

$$\begin{aligned} \left\| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \left[ \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right] \right\| _{1,\varOmega _r}. \end{aligned}$$
(81)

Let

$$\begin{aligned} M_2= \max _{\begin{array}{c} i,j=1,2,3 \\ \alpha \not =\beta , Y\in {\mathbb {R}}^3 \end{array}} \left| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(j)}}(Y) \right| , \end{aligned}$$
(82)

then

$$\begin{aligned}&\left\| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \left[ \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right] \right\| _{1,\varOmega _r}\nonumber \\&\quad \le M_2\sum _{k=1}^3 \left\| \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r}. \end{aligned}$$
(83)

Moreover

$$\begin{aligned}&\left\| \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r} \nonumber \\&\quad = \left\| \frac{\partial }{\partial X_j} \int _{0}^{1}F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)}{{\mathrm{d}}}s' \right. \nonumber \\&\left. \qquad - \frac{\partial }{\partial X_j} \int _{0}^{1}\tilde{F}_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)}{{\mathrm{d}}}s' \right\| _{1,\varOmega _r}\nonumber \\&\quad = \left\| \int _{0}^{1} \left[ \frac{\partial }{\partial X_j} F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)} \right. \right. \nonumber \\&\left. \left. \qquad - \frac{\partial }{\partial X_j} \tilde{F}_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)} \right] {{\mathrm{d}}}s' \right\| _{1,\varOmega _r}\nonumber \\&\quad \le \int _{0}^{1} \left\| \frac{\partial }{\partial X_j} F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)} \right. \nonumber \\&\left. \qquad - \frac{\partial }{\partial X_j} \tilde{F}_{km}\left( X+(s'-s)R_{\alpha \beta }\right) R_{\alpha \beta }^{(m)} \right\| _{1,\varOmega _r} {{\mathrm{d}}}s'\nonumber \\&\quad \le 2h \sum _{m=1}^3 \int _{0}^{1} \left\| \frac{\partial }{\partial X_j} F_{km}\left( X+(s'-s)R_{\alpha \beta }\right) \right. \nonumber \\&\left. \qquad - \frac{\partial }{\partial X_j} \tilde{F}_{km}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{1,\varOmega _r} {{\mathrm{d}}}s'\nonumber \\&\quad = 2h \sum _{m=1}^3\int _{0}^{1} \left\| \frac{\partial ^2}{\partial X_j\partial X_m} R^{(k)}\left( X+(s'-s)R_{\alpha \beta }\right) \right. \nonumber \\&\left. \qquad - \frac{\partial ^2}{\partial X_j\partial X_m} {\mathscr {I}}_hR^{(k)}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{1,\varOmega _r} {{\mathrm{d}}}s'. \end{aligned}$$
(84)

Again, using error analysis theory of finite element methods it follows that

$$\begin{aligned}&\left\| \frac{\partial ^2}{\partial X_j\partial X_m} R^{(k)}\left( X+(s'-s)R_{\alpha \beta }\right) \right. \nonumber \\&\left. \qquad - \frac{\partial ^2}{\partial X_j\partial X_m} {\mathscr {I}}_hR^{(k)}\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{1,\varOmega _r} \nonumber \\&\quad \le Ch^{3/2} \left\| \nabla ^2 R\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}\nonumber \\&\quad = Ch^{3/2} \left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}. \end{aligned}$$
(85)

Combining inequalities (83) through (85) we have

$$\begin{aligned}&\left\| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \left[ \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} - \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right] \right\| _{1,\varOmega _r} \nonumber \\&\quad \le Ch^{5/2}M_2 \int _{0}^{1} \left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'. \end{aligned}$$
(86)

Now combining inequalities (70), (80) and (86) leads to

$$\begin{aligned} ER_{ij}&= \left\| \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( {I}_{\alpha \beta }(X,s)\right) \frac{\partial {I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right. \nonumber \\&\left. \qquad -\, \frac{\partial ^2 E_{\alpha }}{\partial r_{\alpha \beta }^{(i)}\partial r_{\alpha \beta }^{(k)}} \left( \tilde{I}_{\alpha \beta }(X,s)\right) \frac{\partial \tilde{I}_{\alpha \beta }^{(k)}(X,s)}{\partial X_j} \right\| _{1,\varOmega _r} \nonumber \\&\quad \le Ch^3M_3 \left( \int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s' \right) ^2 \nonumber \\&\qquad + Ch^{5/2}M_2 \int _{0}^{1} \left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'. \end{aligned}$$
(87)

Furthermore, using inequality (67) we have

$$\begin{aligned}&\int _{\varOmega _r}\left| \nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) - \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) \right| {{\mathrm{d}}}X \nonumber \\&\quad \le Ch^3M_3 \left( \int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s' \right) ^2 \nonumber \\&\qquad + Ch^{5/2}M_2 \int _{0}^{1} \left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r} {{\mathrm{d}}}s'. \end{aligned}$$
(88)

Combining inequalities (62) and (88) we finally derive

$$\begin{aligned}&\left| \int _{\varOmega _r}\left( \nabla \cdot {P}(X)- \nabla \cdot \tilde{P}(X)\right) {{\mathrm{d}}}X \right| \nonumber \\&\quad \le \frac{1}{2h^2}\sum _{\alpha }\sum _{\beta \not =\alpha } \eta _{\alpha }\int _{0}^{1} \int _{\varOmega _r}\left| \nabla \left( \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }} \left( {I}_{\alpha \beta }(X,s)\right) \right. \right. \nonumber \\&\left. \left. \qquad -\, \frac{\partial E_{\alpha }}{\partial r_{\alpha \beta }}\left( \tilde{I}_{\alpha \beta }(X,s) \right) \right) \right| {{\mathrm{d}}}X{{\mathrm{d}}}s \nonumber \\&\quad \le ChM_3 \sum _{\alpha }\sum _{\beta \not =\alpha }\int _{0}^{1} \left( \int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s' \right) ^2 {{\mathrm{d}}}s \nonumber \\&\qquad + Ch^{1/2}M_2 \sum _{\alpha }\sum _{\beta \not =\alpha }\int _{0}^{1} \int _{0}^{1}\left\| \nabla F\left( X+(s'-s)R_{\alpha \beta }\right) \right\| _{2,\varOmega _r}{{\mathrm{d}}}s' {{\mathrm{d}}}s. \end{aligned}$$
(89)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cui, J. & Han, T. Error analysis for momentum conservation in Atomic-Continuum Coupled Model. Comput Mech 58, 199–211 (2016). https://doi.org/10.1007/s00466-016-1289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1289-8

Keywords

Navigation