Skip to main content
Log in

A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a multiscale computational homogenization model for the post localization behavior of a macroscale domain crossed by a cohesive discontinuity emanating from microstructural damage. The stress–strain and the cohesive macroscopic responses are obtained incorporating the underlying microstructure, in which the damage evolution results in the formation of a strain localization band. The macro structural kinematics entails a discontinuous displacement field and a non-uniform deformation field across the discontinuity. Novel scale transitions are formulated to provide a consistent coupling to the continuous microscale kinematics. From the solution of the micromechanical boundary value problem, the macroscale stress responses at both sides of the discontinuity are recovered, providing automatically the cohesive tractions at the interface. The effective displacement jump and deformation field discontinuity are derived from the same microscale analysis. This contribution focusses on scale transition relations and on the solution procedure at the microlevel; the highlights of the approach are demonstrated on microscale numerical examples. Coupled two-scale solution strategy will be presented in a subsequent paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Belytschko T, Möes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  MATH  Google Scholar 

  2. Belytschko T, Loehnert S, Song J (2008) Multi-scale aggregating discontinuities: a method for circumventing loss of material stability. Int J Num Methods Eng 73:869894

    Article  MathSciNet  Google Scholar 

  3. Coenen E, Kouznetsova V, Geers M (2011) Enabling microstructure-based damage and localization analyses and upscaling. Model Simul Mater Sci Eng 15(074):008

    Google Scholar 

  4. Coenen E, Kouznetsova V, Bosco E, Geers M (2012a) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization–localization framework. Int J Fract 178:157–178

    Article  Google Scholar 

  5. Coenen E, Kouznetsova V, Geers M (2012b) Multi-scale continuous–discontinuous framework for computational-homogenization–localization. J Mech Phys Solids 60(8):1486–1507

    Article  MathSciNet  Google Scholar 

  6. Coenen E, Kouznetsova V, Geers M (2012c) Novel boundary conditions for strain localization analysis in microstructural volume elements. Int J Numer Methods Eng 90:1–21

    Article  MathSciNet  MATH  Google Scholar 

  7. Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MathSciNet  MATH  Google Scholar 

  8. Feyel F, Chaboche J (2000) FE\( ^2 \) multiscale approach for modelling the elastoviscoplastic behaviour of long fiber sic/ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  9. Geers M (2004) Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework. Comput Methods Appl Mech Eng 193:3377–3401

    Article  MATH  Google Scholar 

  10. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385

    Article  MATH  Google Scholar 

  11. Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mech Mater 39(3):241–266

    Article  Google Scholar 

  12. Ghosh S, Bai J, Paquet D (2009) Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities. J Mech Phys Solids 57:1017–1044

    Article  MATH  Google Scholar 

  13. Gitman I, Askes H, Sluys L (2008) Coupled-volume multiscale modelling of quasi-brittle material. Eur J Mech A Solids 27:302–327

    Article  MATH  Google Scholar 

  14. Guidault P, Allix O, Champaney L, Cornuault C (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197:381–399

    Article  MATH  Google Scholar 

  15. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  16. Hough P (1959) Machine analysis of bubble chamber pictures. In: Proc. Int. Conf. High Energy Accelerators and Instrumentation.

  17. Huespe A, Needleman A, Oliver J, Sànchez P (2009) A finite thickness band method for ductile fracture analysis. Int J Plast 25(12):2349–2365

    Article  Google Scholar 

  18. Huespe A, Needleman A, Oliver J, Sànchez P (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plast 28(1):53–69

    Article  Google Scholar 

  19. Kim B, Lee H (2010) Elastoplastic modeling of circular fiber-reinforced ductile matrix composites considering a finite RVE. Int J Solids Struct 47:827–836

    Article  MATH  Google Scholar 

  20. Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48

    Article  MATH  Google Scholar 

  21. Kouznetsova V, Geers M, Brekelmans W (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  22. Lee HG, Kim J (2012) Regularized Dirac delta functions for phase field models. Int J Numer Methods Eng 91(3):269–288

    Article  MATH  Google Scholar 

  23. Legarth B, Niordson C (2010) Debonding failure and size effects in micro-reinforced composites. Int J Plast 26(1):149–165

    Article  MATH  Google Scholar 

  24. Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71:1466–1482

    Article  MathSciNet  MATH  Google Scholar 

  25. Mahmoodi M, Aghdam M, Shakeri M (2010) Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater Des 31:829–836

    Article  Google Scholar 

  26. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  27. Massart T, Peerlings R, Geers M (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69:1022–1059

    Article  MATH  Google Scholar 

  28. Mercatoris B, Massart T (2011) A coupled two-scale computational scheme for the failure of periodic quasibrittle thin planar shells and its application to masonry. Int J Numer Methods Eng 73:869–894

    Google Scholar 

  29. Miehe C, Schroder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen V, Lloberas-Valls O, Stroeven M, Sluys L (2011) Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Comput Methods Appl Mech Eng 200:1220–1236

    Article  MATH  Google Scholar 

  31. Pardoen T, Hutchinson J (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48(12):2467–2512

    Article  MATH  Google Scholar 

  32. Rice J (1976) The localization of plastic deformation. In: Koiter WT (ed) Theoretical and applied mechanics. North-Holland Publishing, Amsterdam

    Google Scholar 

  33. Sànchez P, Blanco P, Huespe A, Feijòo R (2013) Failure-oriented multi-scale variational formulation: micro-structures with nucleation and evolution of softening bands. Comput Methods Appl Mech Eng 257:221–247

    Article  MATH  Google Scholar 

  34. Simo J (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99(1):61–112

    Article  MathSciNet  MATH  Google Scholar 

  35. Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behaviour of non-linear heterogeneous systems by multilevel finite element modeling. Comput Methods Appl Mech Eng 155:181–192

    Google Scholar 

  36. Suquet P (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today: modeling, methods and applications. Elsevier, London, pp 279–310

    Google Scholar 

  37. Tekoglu C, Pardoen T (2010) A micromechanics based damage model for composite materials. Int J Plast 26(4):549–569

    Article  MATH  Google Scholar 

  38. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464

    Article  MathSciNet  MATH  Google Scholar 

  39. Tvergaard V (1998) Interaction of very small voids with larger voids. Int J Solids Struct 35(30):3989–4000

    Article  MathSciNet  MATH  Google Scholar 

  40. Uthaisangsuk V, Prahl U, Bleck W (2009) Characterisation of formability behaviour of multiphase steels by micromechanical modelling. Int J Fract 157:55–69

    Article  MATH  Google Scholar 

  41. Verhoosel C, Remmers J, Gutierrez M (2010) A partition of unity-based multiscale approach for modelling fracture in piezoelectric ceramics. Int J Numer Methods Eng 82:966–994

    Article  MATH  Google Scholar 

  42. Xu X, Needleman A (1993) Void nucleation by inclusions debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132

    Article  Google Scholar 

  43. Zohdi T, Wriggers P (1999) A domain decomposition method for bodies with heterogeneous microstructure basedon material regularization. Int J Solids Struct 36(17):2507–2525

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bosco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco, E., Kouznetsova, V.G., Coenen, E.W.C. et al. A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity. Comput Mech 54, 299–319 (2014). https://doi.org/10.1007/s00466-014-0986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0986-4

Keywords

Navigation