Skip to main content
Log in

An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Strain smoothing operation has been recently adopted to soften the stiffness of the model created using tetrahedron mesh, such as the Face-based Smoothed Finite Element Method (FS-FEM), with the aim to improve solution accuracy and the applicability of low order tetrahedral elements. In this paper, a new method with strain smoothing operation based on the edge of four-node tetrahedron mesh is proposed, and the edge-based smoothing domain of tetrahedron mesh is serving as the assembly unit for computing the 3D stiffness matrix. Numerical results demonstrate that the proposed method possesses a close-to-exact stiffness of the continuous system and gives better results than both the FEM and FS-FEM using tetrahedron mesh or even the FEM using hexahedral mesh in the static and dynamic analysis. In addition, a novel domain-based selective scheme is proposed leading to a combined ES-T-/NS-FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed method is an innovative and unique numerical method with its distinct features, which possesses strong potentials in the successful applications for static and dynamics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  2. Liu GR, Quek SS (2003) Finite element method: a practical course. Butter-worth-heinemann, Burlington

    MATH  Google Scholar 

  3. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  4. Li RH, Chen ZY, Wu W (2000) Generalized difference methods for differential equations: numerical analysis of finite volume methods. Marcel Dekker, New York

    Google Scholar 

  5. Wu TW (2000) Boundary element in acoustics: fundamentals and computer codes. WIT Press, Southampton

    Google Scholar 

  6. Liu YJ (2009) Fast multipole boundary element method: theory and applications in engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree practical method. World Scientific, Singapore

    Book  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, pp 451–507

  11. Cisloiu R, Lovell M, Wang J (2008) A stabilized mixed formulation for finite strain deformation for low-order tetrahedral solid elements. Finite Elem Anal Des 44(8): 472–482

    Article  Google Scholar 

  12. Bucalem ML, Bathe KJ (2001) The mechanics of solids and structures: hierarchical modeling and the finite element solution. Springer, Berlin

    Google Scholar 

  13. Dohrmann CR, Key SW, Heinstein MW, Jung J (1998) A least squares approach for uniform strain triangular and tetrahedral finite elements. Int J Numer Methods Eng 142: 1181–1197

    Article  Google Scholar 

  14. Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR (2000) Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int J Numer Methods Eng 47: 1549–1568

    Article  MATH  Google Scholar 

  15. Puso MA, Solberg J (2006) A formulation and analysis of a stabilized nodally integrated tetrahedral. Int J Numer Methods Eng 67: 841–867

    Article  MathSciNet  MATH  Google Scholar 

  16. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Math Stat 21: 337–344

    MathSciNet  MATH  Google Scholar 

  17. Klaas O, Maniatty A, Shephard MS (1999) A stabilized mixed finite element method for finite elasticity. Formulation for linear displacement and pressure interpolation. Comput Methods Appl Mech Eng 180: 65–79

    Article  MATH  Google Scholar 

  18. Mahnken R, Caylak I, Laschet G (2008) Two mixed finite element formulations with area bubble functions for tetrahedral elements. Comput Methods Appl Mech Eng 197: 1147–1165

    Article  MathSciNet  MATH  Google Scholar 

  19. Caylak I, Mahnken R (2012) Stabilization of mixed tetrahedral elements at large deformations. Int J Numer Methods Eng 90: 218–242

    Article  MathSciNet  MATH  Google Scholar 

  20. Taylor RL (2000) A mixed-enhanced formulation for tetrahedral finite elements. Int J Numer Methods Eng 47: 205–225

    Article  MATH  Google Scholar 

  21. Lamichhane BP (2009) A mixed finite element method for nonlinear and nearly incompressible elasticity based on biorthogonal systems. Int J Numer Methods Eng 79: 870–886

    Article  MathSciNet  MATH  Google Scholar 

  22. Cervera M, Chiumenti M, Valverde Q, Ageletde Saracibar C (2003) Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng 192(49-50): 5249–5263

    Article  MATH  Google Scholar 

  23. Agelet de Saracibar C, Chiumenti M, Valverde Q, Cervera M (2006) On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. Comput Methods Appl Mech Eng 195(9–12): 1224–1251

    Article  MATH  Google Scholar 

  24. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics, Part I: Formulation. Comput Methods Appl Mech Eng 199: 2559–2570

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

    Google Scholar 

  26. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  27. Liu GR, Dai KY, Nguyen TT (2007) A smoothed element method for mechanics problems. Comput Mech 39: 859–877

    Article  MATH  Google Scholar 

  28. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71: 902–930

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5: 199– 236

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu GR (2010) A weakened weak (W2) form for a unified formulation of compatible and incompatible methods, Part I: Theory and Part II: Applications to solid mechanics problems. Int J Numer Methods Eng 81: 1093–1156

    MATH  Google Scholar 

  31. Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. Int J Comput Methods 2(4): 645–665

    Article  MATH  Google Scholar 

  32. Zhang GY, Liu GR, Wang YY, Huang HT, Zhong ZH, Li GY, Han X (2007) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Numer Methods Eng 72(113): 1524–1543

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu GR, Nguyen TT, Nguyen HX, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87: 14–26

    Article  Google Scholar 

  34. Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74: 1128– 1161

    Article  MATH  Google Scholar 

  35. Liu GR, Nguyen TT, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics. J Sound Vib 320: 1100–1130

    Article  Google Scholar 

  36. Nguyen TT, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically nonlinear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353

    Article  MATH  Google Scholar 

  37. Nguyen TT, Liu GR, Vu-Do HC, Nguyen XH (2009) A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Comput Methods Appl Mech Eng 198: 3479–3498

    Article  MATH  Google Scholar 

  38. Liu GR, Zhang GR (2008) Edge-based smoothed point interpolation methods. Int J Comput Methods 5(4): 621–646

    Article  MathSciNet  MATH  Google Scholar 

  39. He ZC, Liu GR, Zhong ZH, Wu SC, Zhang GY, Cheng AG (2009) An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems. Comput Methods Appl Mech Eng 199: 20–33

    Article  MathSciNet  MATH  Google Scholar 

  40. He ZC, Cheng AG, Zhang GY, Zhong ZH, Liu GR (2011) Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method (ES-FEM). Int J Numer Methods Eng 86(11): 1322–1338

    Article  MathSciNet  MATH  Google Scholar 

  41. He ZC, Cheng AG, Zhong ZH, Zhang GY, Li GY. An improved eigenfrequencies prediction for three-dimensional problems using face-based smoothed finite element method. Acta Mechanica Sinica (Accepted)

  42. Liu GR, Nguyen TT, Lam KY (2008) Novel alpha finite element method (aFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197: 3883–3897

    Article  MATH  Google Scholar 

  43. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2010) Dispersion free analysis of acoustic problems using the alpha finite element method. Comput Mech 46(6): 867–881

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu GR, Nguyen TT (2010) Smoothed finite element methods. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  46. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z.C., Li, G.Y., Zhong, Z.H. et al. An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52, 221–236 (2013). https://doi.org/10.1007/s00466-012-0809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0809-4

Keywords

Navigation