Skip to main content
Log in

The inner structure of sensitivities in nodal based shape optimisation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The pseudo load matrix and the sensitivity matrix dominate design sensitivity analysis of shape optimisation problems. They describe how a structure reacts on an imposed design modification. We analyse these matrices for the model problem of nodal based shape optimisation by a singular value decomposition and show that they contain additional valuable information which is not yet used either in theory or computation of shape optimisation. The inner structure of the sensitivities is capable to formulate reduced quadratic sub-problems within the sequential quadratic programming approach. We also tackle the problem of indefinite Hessian matrices in nodal based shape optimisation. Furthermore, we avoid jagged boundaries and obtain mesh-independent optimised structures applying density filtering technique to shape optimisation. Overall, we emphasise an enhanced analysis of sensitivities and point to unused substantial capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GNU scientific library (GSL). http://www.gnu.org/software/gsl

  2. SVDPACK. http://www.netlib.org/svdpack

  3. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz JD, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA

  4. Antoulas AC, Sorensen DC (2001) Approximation of large-scale dynamical systems: an overview. Int J Appl Math Comput Sci 11(5): 1093–1121

    MathSciNet  MATH  Google Scholar 

  5. Bai Z, Demmel J, Dongarra J, Ruhe A, Vander Vorst H (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  MATH  Google Scholar 

  6. Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum structural design—a review. Struct Optim 5: 129–144

    Article  Google Scholar 

  7. Barthold FJ (2002) Zur Kontinuumsmechanik inverser Geometrieprobleme. http://hdl.handle.net/2003/23095

  8. Barthold FJ (2005) On structural optimization and configurational mechanics. In: Maugin G, Steinmann P (eds) Mechanics of Material Forces, pp 219–228. doi:10.1007/0-387-26261-X_22. ISBN: 978-0-387-26260-4

  9. Barthold FJ (2005) Remarks on the application of design sensitivity analysis to fracture mechanics. In: Proceedings International Congress Fracture (ICF 11). http://www.icf11.com/proceeding/EXTENDED/5429.pdf

  10. Barthold FJ (2008) Remarks on variational shape sensitivity analysis based on local coordinates. Eng Anal Bound Elem 32: 971–985

    Article  Google Scholar 

  11. Bletzinger KU, Firl M, Linhard J, Wüchner R (2010) Optimal shapes of mechanically motivated surfaces. Comput Methods Appl Mech Eng 199(5–8): 324–333

    Article  MATH  Google Scholar 

  12. Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4): 351–385

    Article  MathSciNet  MATH  Google Scholar 

  13. Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44: 247–267

    Article  MATH  Google Scholar 

  14. Choi K, Kim NH (2005) Structural sensitivity analysis and optimization 2 - Nonlinear systems and applications. Mechanical Engineering Series. Springer, New York

    Google Scholar 

  15. Choi KK, Kim N (2005) Structural sensitivity analysis and optimisation 1 (linear systems). Springer Science+Business Media, Inc, New York

  16. Daoud F, Firl M, Bletzinger KU (2005) Filter techniques in shape optimization with CAD-free parametrization. Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization

  17. Ersoy H, Mugan A (2002) Design sensitivity analysis of structures based upon the singular value decomposition. Comput Methods Appl Mech Eng 191: 3459–3476

    Article  MATH  Google Scholar 

  18. Gerzen N, Barthold FJ (2011) Enhanced analysis of design sensitivities in topology optimisation. Structural and Multidisciplinary Optimization, Submitted for publictaion

  19. Golub GH, Vander Vorst HA (2000) Eigenvalue computation in the 20th century. Comp Appl Math 123: 35–65

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub GH, Van Loan CF (1996) Matrix computations. John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  21. Haftka RT, Adelman HM (1989) Recent developments in structural sensitivity analysis. Struct Optim 1: 137–151

    Article  Google Scholar 

  22. Haftka RT, Grandhi R (1986) Structural shape optimization-a survey. Comput Methods Appl Mech Eng 57: 91–106

    Article  MathSciNet  MATH  Google Scholar 

  23. Hammerling S (1985) The singular value decomposition in multivariate statistics. ACM SIGNUM Newsl 20(3): 2–25

    Article  Google Scholar 

  24. Haug E, Choi K, Komkov V (1986) Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando

    MATH  Google Scholar 

  25. Jog CS, Haber R (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl Mech Eng 130: 203–226

    Article  MathSciNet  MATH  Google Scholar 

  26. Jolliffe IT (1986) Principal component analysis. Springer, Heidelberg

    Google Scholar 

  27. Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9-12): 985–996

    Article  MathSciNet  MATH  Google Scholar 

  28. Lenzen A, Waller H (2003) Deterministische und stochastische systemidentifikation mit methoden der linearen algebra zur formulierung von mathematischen modellen im lebensdauerzyklus von bauwerken. In: Gürlebeck K, Hempel L, Könke C (eds) Proceedings 16th international conference on the applications of computer science and mathematics in architecture and civil engineering. IKM, Weimar

  29. Lima J Jr, Oliveira Ad (2005) Placement optimization of piezoelectric actuators in a simply supported beam, through svd analysis and shape function critic point. In: 6th World congress on strcutural and multidisciplinary optimization

  30. Martin JG (2005) Subproblem optimisation by gene correlation with singular value decomposition. GECCO 05: Proceedings of the 2005 conference on genetic and evolutionary computation, pp 1507–1514

  31. Materna D (2010) Structural and sensitivity analysis for the primal and dual problems in the physical and material spaces. Shaker verlag, AAchen

    Google Scholar 

  32. Materna D, Barthold FJ (2007) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract 147(1-4): 133–155. doi:10.1007/s10704-007-9142-x

    Article  MATH  Google Scholar 

  33. Materna D, Barthold FJ (2008) On variational sensitivity analysis and configurational mechanics. Comput Mech 41(5): 661–681. doi:10.1007/s00466-007-0223-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Materna D, Barthold FJ (2009) Goal-oriented r-adaptivity based on variational arguments in the physical and material spaces. Comput Methods Appl Mech Eng 198(41–44): 3335–3351. doi:10.1016/j.cma.2009.06.015

    Article  MathSciNet  MATH  Google Scholar 

  35. Materna D, Barthold FJ (2010) Computational optimization: new research developments. Nova Science Publishers, pp 397–444. ISBN: 978-1-60692-671-0

  36. Müller N, Magaia L, Herbst BM (2004) Singular value decomposition, eigenfaces, and 3d reconstructions. SIAM Rev 46(3): 518–545 http://www.jstor.org/stable/20453537

    Google Scholar 

  37. Nocedal J, Wright S (2006) Numerical optimization. Springer Science and Business Media, New York

    MATH  Google Scholar 

  38. Ramachandran P (2002) Method of fundamental solutions: singular value decomposition. Commun Numer Methods Eng 18(11): 789–801

    Article  MATH  Google Scholar 

  39. Ranade AG, Mahabalarao SS, Kale S (2007) A variation on svd based image compression. Image Vision Comput 25(6): 771–777

    Article  Google Scholar 

  40. Scherer M, Denzer R, Steinmann P (2010) A fictitious energy approach for shape optimization. Int J Numer Methods Eng 82: 269–302. doi:10.1002/nme.2764

    MathSciNet  MATH  Google Scholar 

  41. Schittkowski K (1985) Nlpql: A fortran subroutine solving constrained nonlinear programming problems. Ann Oper Res 5: 485–500

    MathSciNet  Google Scholar 

  42. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33: 401–424

    Article  Google Scholar 

  43. Tikhonov AN, Concharsky A, Stepanov V, Yagola AG (1995) Numerical Methods for the solution of ill-posed problems. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  44. Van der Vorst HA (2002) Computational methods for large eigenvalue problems. In: Ciarlet PG, Lions JL(eds) Handbook of numerical analysis, vol 3. North Holland, Amsterdam, pp 3–179

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Gerzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerzen, N., Materna, D. & Barthold, FJ. The inner structure of sensitivities in nodal based shape optimisation. Comput Mech 49, 379–396 (2012). https://doi.org/10.1007/s00466-011-0648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0648-8

Keywords

Navigation