Skip to main content
Log in

On variational sensitivity analysis and configurational mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This contribution is concerned with the application of variational design sensitivity analysis in the context of structural optimization and configurational mechanics. In both disciplines we consider variations of the material configuration and we use techniques from variational sensitivity analysis in order to solve these problems. We derive the physical and material residual problem in one step by using standard optimization procedures. Furthermore, we investigate the sensitivity of the physical as well as the material residual problem and obtain the coupled saddle point problem based on these sensitivities. Both problems are coupled by the pseudo load operator, which plays an important role by the solution of structural optimization problems. By means of computational examples from mesh optimization and shape optimization, we demonstrate the capability of the proposed theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askes H, Kuhl E, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications. Comput Methods Appl Mech Eng 193:4223–4245

    Google Scholar 

  2. Askes H, Bargmann S, Kuhl E and Steinmann P (2005). Structural optimisation by simultaneous equilibration of spatial and material forces. Commun Numer Meth Eng 21: 433–442

    Article  MATH  Google Scholar 

  3. Barthold FJ (2002) Zur Kontinuumsmechanik inverser Geometrieprobleme. Habilitationsschrift, Braunschweiger Schriften zur Mechanik 44-2002, TU Braunschweig, URL http://hdl.handle.net/2003/23095

  4. Barthold FJ (2003). A structural optimization viewpoint on configurational mechanics. Proc Appl Math Mech 3: 246–247

    Article  Google Scholar 

  5. Barthold FJ (2005). On structural optimisation and configurational mechanics. In: Steinmann, P and Maugin, GA (eds) Mechanics of material forces, vol 11., pp 219–228. Springer, Heidelberg

    Chapter  Google Scholar 

  6. Barthold FJ (2007) Remarks on variational shape sensitivity analysis based on local coordinates. Eng Anal Bound Elem (in press)

  7. Barthold FJ and Mesecke S (1999). Remarks on computing the energy release rate and its sensitivities. In: Mota Soares, C, Mota Soares, C and Freitas, M (eds) Mechanics of composite materials and structures, nato science series, Serie E: Applied Science, vol 361., pp 341–350. Kluwer, Dordrecht

    Google Scholar 

  8. Barthold FJ and Stein E (1996). A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I. Anal Struct Optim 11(1/2): 29–42

    Article  Google Scholar 

  9. Barthold FJ, Wiechmann K (2006) A comparison of displacement and mixed finite element formulations for variational design sensitivity analysis. In: Mota Soares CA et al (ed) III European conference on computational mechanics, Paper 2003

  10. Bendsøe MP and Sigmund O (2003). Topology optimization-theory, methods and applications. Springer, Heidelberg

    Google Scholar 

  11. Benzi M and Golub GH (2004). A preconditioner for generalized saddle point problems. Siam J Matrix Anal Appl 26(1): 20–41

    Article  MATH  MathSciNet  Google Scholar 

  12. Bertram A (1989). Axiomatische Einführung in die Kontinuumsmechanik. BI-Wissenschaftsverlag, Mannheim

    MATH  Google Scholar 

  13. Braun M (1997). Configurational forces induced by finite-element discretisation. Proc Estonian Acad Sci Phys Math 46: 24–31

    MATH  MathSciNet  Google Scholar 

  14. Braun M (2005). Structural optimization by material forces. In: Steinmann, P and Maugin, GA (eds) Mechanics of material forces, vol 11., pp 211–218. Springer, Heidelberg

    Chapter  Google Scholar 

  15. Carpenter WC and Zendegui S (1982). Optimum nodal locations for a finite element idealization. Eng Optim 5: 215–221

    Article  Google Scholar 

  16. Carroll WE and Barker RM (1973). A theorem for optimum finite-element idealizations. Int J Solids Struct 9: 883–895

    Article  MathSciNet  Google Scholar 

  17. Choi KK, Kim NH (2005a) Structural sensitivity analysis and optimization 1—Linear systems. Mechanical Engineering Series. Springer, Berlin

  18. Choi KK, Kim NH (2005b) Structural sensitivity analysis and optimization 2—Nonlinear systems and applications, Mechanical Engineering Series. Springer, Berlin

  19. Dems K and Mróz Z (1978). Multiparameter structural shape optimization by the finite element method. Int J Numer Methods Eng 13(2): 247–263

    Article  MATH  Google Scholar 

  20. Engl HW, Hanke M and Neubauer A (2000). Regularization of inverse problems. Kluver, Dordrecht

    Google Scholar 

  21. Eshelby JD (1951). The force on an elastic singularity. Philos Trans R Soc Lond 244: 87–112

    Article  MathSciNet  MATH  Google Scholar 

  22. Eshelby JD (1975). The elastic energy-momentum tensor. J Elast 5: 321–335

    Article  MATH  MathSciNet  Google Scholar 

  23. Golub GH and Loan CFV (1996). Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  24. Govindjee S and Mihalic PA (1996). Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136(1–2): 47–57

    Article  MATH  Google Scholar 

  25. Govindjee S and Mihalic PA (1998). Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43(5): 821–838

    Article  MATH  Google Scholar 

  26. Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer, New York

    Google Scholar 

  27. Kalpakides VK and Balassas KG (2005). The inverse deformation mapping in the finite element method. Philos Mag 85(33–35): 4257–4275

    Article  Google Scholar 

  28. Kalpakides VK, Maugin G (eds) (2004) Configurational mechanics. A.A. Balkema, Amsterdam

    MATH  Google Scholar 

  29. Kamat MP (1993). Structural optimization: status and promise. American Institute of Aeronautics and Astronautics, Washington

    Google Scholar 

  30. Kienzler R and Herrmann G (2000). Mechanics in material space. Springer, Berlin

    MATH  Google Scholar 

  31. Kuhl E, Askes H, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193:4207–4222

    Google Scholar 

  32. Marsden JE and Hughes TJR (1994). Mathematical foundations of elasticity. Dover, New York

    Google Scholar 

  33. Materna D and Barthold FJ (2006). Coherence of structural optimization and configurational mechanics. Proc Appl Math Mech 6(1): 245–246 10.1002/pamm.200610103

    Article  Google Scholar 

  34. Materna D, Barthold FJ (2006b) Relations between structural optimization and configurational mechanics with applications to mesh optimization. In: Sienz J, Querin OM, Toropov VV, Gosling PD (eds) Proceedings of the 6th ASMO-UK/ISSMO Conference on Engineering Design Optimization, St Edmund Hall, Oxford, UK, University of Leeds, UK, pp 173–181

  35. Materna D, Barthold FJ (2007a) The use of singular value decomposition in sensitivity analysis and mesh optimization. (submitted)

  36. Materna D, Barthold FJ (2007b) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract (in press)

  37. Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London

    MATH  Google Scholar 

  38. Maugin GA (1995). Material forces: concepts and applications. Appl Mech Rev 48: 213–245

    Article  MathSciNet  Google Scholar 

  39. Maugin GA and Trimarco C (1992). Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94: 1–28

    Article  MathSciNet  MATH  Google Scholar 

  40. McNeice GM and Marcal PE (1973). Optimization of finite element grids based on minimum potential energy. ASME J Eng Ind 95(1): 186–190

    Google Scholar 

  41. Mosler J and Ortiz M (2006). On the numerical modeling of variational arbitrary lagrangian-eulerian (vale) formulations. Int J Numer Meth Eng 67: 1272–1289

    Article  MATH  MathSciNet  Google Scholar 

  42. Mueller R and Maugin GA (2002). On material forces and finite element discretizations. Comput Mech 29: 52–60

    Article  MATH  MathSciNet  Google Scholar 

  43. Mueller R, Kolling S and Gross D (2002). On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53: 1557–1574

    Article  MATH  MathSciNet  Google Scholar 

  44. Mueller R, Gross D and Maugin GA (2004). Use of material forces in adaptive finite element methods. Comput Mech 33: 421–434

    Article  MATH  Google Scholar 

  45. Nocedal J and Wright SJ (1999). Numerical optimization. Springer, Heidelberg

    MATH  Google Scholar 

  46. Noll W (1972). A new mathematical theory of simple materials. Arch Ration Mech Anal 48(1): 1–50

    Article  MATH  MathSciNet  Google Scholar 

  47. Steinmann P (2000). Application of material forces to hyperelastic fracture mechanics. I. Continuum mechanical settings. Int J Solids Struct 37: 7371–7391

    Article  MATH  MathSciNet  Google Scholar 

  48. Steinmann P, Maugin GA (eds) (2005) Mechanics of material forces. Springer, Heidelberg

    MATH  Google Scholar 

  49. Sussman T and Bathe KJ (1985). The gradient of the finite element variational indicator with respect to nodal point coordinates: an explicit calculation and applications in fracture mechanics and mesh optimization. Int J Numer Meth Eng 21(4): 763–774

    Article  MATH  Google Scholar 

  50. Thoutireddy P (2003) Variational arbitrary Lagrangian-Eulerian method. Phd thesis, California Institute of Technology, Passadena, CA

  51. Thoutireddy P and Ortiz M (2004). A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61(1): 1–21

    Article  MATH  MathSciNet  Google Scholar 

  52. Truesdell C and Noll W (2004). The nonlinear field theories of mechanics, 3rd edn. Springer, Berlin

    Google Scholar 

  53. Wriggers P (2001). Nichtlineare finite-element-methoden. Springer, Heidelberg

    MATH  Google Scholar 

  54. Zhang S and Belegundu A (1993). Mesh distortion control in shape optimization. AIAA J 31(7): 1360–1362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Materna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Materna, D., Barthold, FJ. On variational sensitivity analysis and configurational mechanics. Comput Mech 41, 661–681 (2008). https://doi.org/10.1007/s00466-007-0223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0223-5

Keywords

Navigation