Skip to main content
Log in

A New Lighting on Analytical Discrete Sensitivities in the Context of IsoGeometric Shape Optimization

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Isogeometric shape optimization has been now studied for over a decade. This contribution aims at compiling the key ingredients within this promising framework, with a particular attention to sensitivity analysis. Based on all the researches related to isogeometric shape optimization, we present a global overview of the process which has emerged. The principal feature is the use of two refinement levels of the same geometry: a coarse level where the shape updates are imposed and a fine level where the analysis is performed. We explain how these two models interact during the optimization, and especially during the sensitivity analysis. We present new theoretical developments, algorithms, and quantitative results regarding the analytical calculation of discrete adjoint-based sensitivities. In order to highlight the versatility of this sensitivity analysis method, we perform eight benchmark optimization examples with different types of objective functions (compliance, displacement field, stress field, and natural frequencies), different types of isogeometric element (2D and 3D standard solids, and a Kirchhoff–Love shell), and different types of structural analysis (static and vibration). The numerical performances of the analytical sensitivities are compared with approximate sensitivities. The results in terms of accuracy and numerical cost make us believe that the presented method is a viable strategy to build a robust framework for shape optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Antolin P, Buffa A, Calabrò F, Martinelli M, Sangalli G (2015) Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization. Comput Methods Appl Mech Eng 285:817–828

    MathSciNet  MATH  Google Scholar 

  2. Antolin P, Buffa A, Coradello L (2020) A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff–Love shells. Comput Methods Appl Mech Eng 363:112919

    MathSciNet  MATH  Google Scholar 

  3. Arnout S, Firl M, Bletzinger KU (2012) Parameter free shape and thickness optimisation considering stress response. Struct Multidiscip Optim 45(6):801–814

    MATH  Google Scholar 

  4. Bandara K, Cirak F (2018) Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces. Comput Aided Des 95(3):62–71

    Google Scholar 

  5. Bischoff M, Ramm E, Irslinger J (2017) Encyclopedia of computational mechanics, vol 1859, 2nd edn. Wiley, Hoboken, pp 1–86

    Google Scholar 

  6. Blanchard L, Duvigneau R, Vuong AV, Simeon B (2014) Shape gradient for isogeometric structural design. J Optim Theory Appl 161(2):361–367

    MathSciNet  MATH  Google Scholar 

  7. Bletzinger KU (2017) Shape optimization. American Cancer Society, Atlanta, pp 1–42

    Google Scholar 

  8. Bletzinger KU, Ramm E (2014) Computational form finding and optimization. In: Adriaenssens S, Block P, Veenendaal D, Williams C (eds) Shell structures for architecture. Routledge, London, pp 45–55

    Google Scholar 

  9. Bletzinger KU, Kimmich S, Ramm E (1991) Efficient modeling in shape optimal design. Comput Syst Eng 2(5–6):483–495

    Google Scholar 

  10. Bletzinger KU, Reitinger R, Kimmich S, Ramm E (1993) Shape optimization with program CARAT. Software systems for structural optimization, vol 110. Birkhäuser, Basel, pp 97–124

    Google Scholar 

  11. Bletzinger KU, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30–33):3438–3452

    MathSciNet  MATH  Google Scholar 

  12. Bletzinger KU, Firl M, Daoud F (2008) Approximation of derivatives in semi-analytical structural optimization. Comput Struct 86(13–14):1404–1416

    Google Scholar 

  13. Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44(3):247–267

    MATH  Google Scholar 

  14. Chamoin L, Thai H (2019) Certified real-time shape optimization using isogeometric analysis, PGD model reduction, and a posteriori error estimation. Int J Numer Methods Eng 119(3):151–176

    MathSciNet  Google Scholar 

  15. Choi MJ, Cho S (2018) Constrained isogeometric design optimization of lattice structures on curved surfaces: computation of design velocity field. Struct Multidiscip Optim 58(1):17–34

    MathSciNet  Google Scholar 

  16. Cohen E, Riesenfeld RF, Elber G (2001) Geometric modeling with splines: an introduction. A. K. Peters Ltd, Natick

    MATH  Google Scholar 

  17. Coniglio S, Gogu C, Amargier R, Morlier J (2019) Engine pylon topology optimization framework based on performance and stress criteria. AIAA J 57(12):5514–5526

    Google Scholar 

  18. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(41–44):4160–4183

    MATH  Google Scholar 

  19. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA, 1st edn. Wiley, Hoboken

    MATH  Google Scholar 

  20. Dang Manh N, Evgrafov A, Gravesen J, Lahaye D (2014) Iso-geometric shape optimization of magnetic density separators. COMPEL Int J Comput Math Electr Electron Eng 33(4):1416–1433

    MathSciNet  MATH  Google Scholar 

  21. Daxini SD, Prajapati JM (2017) Parametric shape optimization techniques based on Meshless methods: a review. Struct Multidiscip Optim 56(5):1197–1214

    MathSciNet  Google Scholar 

  22. Ding C, Cui X, Huang G, Li G, Tamma KK (2017) Exact and efficient isogeometric reanalysis of accurate shape and boundary modifications. Comput Methods Appl Mech Eng 318:619–635

    MathSciNet  MATH  Google Scholar 

  23. Ding C et al (2018) A gradient-based shape optimization scheme via isogeometric exact reanalysis. Eng Comput. 35(8):2696–2721. https://doi.org/10.1108/EC-08-2017-0292

    Article  Google Scholar 

  24. Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. American Institute of Aeronautics and Astronautics, Reston, Virigina, pp 1501–1509

  25. Echter R (2013) Isogeometric analysis of shells. PhD thesis, Universität Stuttgart

  26. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    MathSciNet  MATH  Google Scholar 

  27. Ertl FJ, Dhondt G, Bletzinger KU (2019) Vertex assigned morphing for parameter free shape optimization of 3-dimensional solid structures. Comput Methods Appl Mech Eng 353:86–106

    MathSciNet  MATH  Google Scholar 

  28. Evans E, Scott M, Li X, Thomas D (2015) Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput Methods Appl Mech Eng 284:1–20

    MATH  Google Scholar 

  29. Evans JA, Bazilevs Y, Babuška I, Hughes TJ (2009) n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741

    MathSciNet  MATH  Google Scholar 

  30. Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  31. Firl M (2010) Optimal shape design of shell structures. PhD thesis, Technische Universität München

  32. Fußeder D, Simeon B, Vuong AV (2015) Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput Methods Appl Mech Eng 286:313–331. https://doi.org/10.1016/j.cma.2014.12.028

    Article  MathSciNet  MATH  Google Scholar 

  33. Gígola C, Gomez S (1990) A regularization method for solving the finite convex min-max problem. SIAM J Numer Anal 27(6):1621–1634. https://doi.org/10.1137/0727095

    Article  MathSciNet  MATH  Google Scholar 

  34. Gravesen J, Evgrafov A, Nguyen DM (2011) On the sensitivities of multiple eigenvalues. Struct Multidiscip Optim 44(4):583–587. https://doi.org/10.1007/s00158-011-0644-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57(1):91–106. https://doi.org/10.1016/0045-7825(86)90072-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Hassani B, Tavakkoli S, Moghadam N (2011) Application of isogeometric analysis in structural shape optimization. Sci Iran 18(4):846–852. https://doi.org/10.1016/j.scient.2011.07.014

    Article  Google Scholar 

  37. Hiemstra RR, Sangalli G, Tani M, Calabrò F, Hughes TJ (2019) Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity. Comput Methods Appl Mech Eng 355:234–260. https://doi.org/10.1016/j.cma.2019.06.020

    Article  MathSciNet  MATH  Google Scholar 

  38. Hirschler T, Bouclier R, Duval A, Elguedj T, Morlier J (2019a) Isogeometric sizing and shape optimization of thin structures with a solid-shell approach. Struct Multidiscip Optim 59(3):767–785. https://doi.org/10.1007/s00158-018-2100-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Hirschler T, Bouclier R, Duval A, Elguedj T, Morlier J (2019b) The embedded isogeometric Kirchhoff–Love shell: from design to shape optimization of non-conforming stiffened multipatch structures. Comput Methods Appl Mech Eng 349:774–797

    MathSciNet  MATH  Google Scholar 

  40. Hojjat M, Stavropoulou E, Bletzinger KU (2014) The vertex morphing method for node-based shape optimization. Comput Methods Appl Mech Eng 268:494–513

    MathSciNet  MATH  Google Scholar 

  41. Hsu YL (1994) A review of structural shape optimization. Comput Ind 25(1):3–13

    Google Scholar 

  42. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  43. Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18(5):661–673

    MATH  Google Scholar 

  44. Johnson SG. The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt

  45. Kamensky D et al (2017) Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. Comput Methods Appl Mech Eng 314:408–472

    MathSciNet  MATH  Google Scholar 

  46. Kang P, Youn SK (2016) Isogeometric shape optimization of trimmed shell structures. Struct Multidiscip Optim 53(4):825–845

    MathSciNet  Google Scholar 

  47. Kegl M, Brank B (2006) Shape optimization of truss-stiffened shell structures with variable thickness. Comput Methods Appl Mech Eng 195(19–22):2611–2634

    MATH  Google Scholar 

  48. Kiendl J (2011) Isogeometric analysis and shape optimal design of shell structures. PhD thesis, Technische Universität München

  49. Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    MathSciNet  MATH  Google Scholar 

  50. Kiendl J, Schmidt R, Wuchner R, Bletzinger KU (2014) Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput Methods Appl Mech Eng 274:148–167

    MathSciNet  MATH  Google Scholar 

  51. Kirchhoff G (1850) Über das gleichgewicht und die bewegung einer elastischen scheibe. Journal für die reine und angewandte Mathematik 40:51–88

    MathSciNet  Google Scholar 

  52. Kirsch U (2003) A unified reanalysis approach for structural analysis, design, and optimization. Struct Multidiscip Optim 25(2):67–85

    Google Scholar 

  53. Kraft D (1988) A software package for sequential quadratic programming. Forschungsbericht, Wiss. Berichtswesen d. DFVLR, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln

  54. Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996

    MathSciNet  MATH  Google Scholar 

  55. Lee BG, Park Y (2002) Degree elevation of nurbs curves by weighted blossom. Korean J Comput Appl Math 9(1):151–165

    MathSciNet  MATH  Google Scholar 

  56. Lei Z, Gillot F, Jezequel L (2018) Shape optimization for natural frequency with isogeometric Kirchhoff–Love shell and sensitivity mapping. Math Probl Eng 2018:1–11

    MathSciNet  MATH  Google Scholar 

  57. Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Des 43(11):1427–1437

    Google Scholar 

  58. Li XS, Fang SC (1997) On the entropic regularization method for solving min-max problems with applications. Math Methods Oper Res 46(1):119–130

    MathSciNet  MATH  Google Scholar 

  59. Lian H, Kerfriden P, Bordas S (2017) Shape optimization directly from CAD: an isogeometric boundary element approach using T-splines. Comput Methods Appl Mech Eng 317:1–41

    MathSciNet  MATH  Google Scholar 

  60. Lipton S, Evans J, Bazilevs Y, Elguedj T, Hughes T (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5–8):357–373

    MATH  Google Scholar 

  61. Love AEH (1888) Xvi. The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc Lond A 179:491–546

    MATH  Google Scholar 

  62. Lund E, Stegmann J (2006) Eigenfrequency and buckling optimization of laminated composite shell structures using discrete material optimization. In: IUTAM symposium on topological design optimization of structures, machines and materials, vol 137. Springer, Netherlands, pp 147–156

  63. Manh ND, Evgrafov A, Gersborg AR, Gravesen J (2011) Isogeometric shape optimization of vibrating membranes. Comput Methods Appl Mech Eng 200(13–16):1343–1353

    MathSciNet  MATH  Google Scholar 

  64. Morganti S et al (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520

    MathSciNet  MATH  Google Scholar 

  65. Nagy AP, Abdalla MM, Gürdal Z (2010) Isogeometric sizing and shape optimisation of beam structures. Comput Methods Appl Mech Eng 199(17–20):1216–1230

    MathSciNet  MATH  Google Scholar 

  66. Nagy AP, Abdalla MM, Gürdal Z (2011) Isogeometric design of elastic arches for maximum fundamental frequency. Struct Multidiscip Optim 43(1):135–149

    MathSciNet  MATH  Google Scholar 

  67. Nagy AP, IJsselmuiden ST, Abdalla MM (2013) Isogeometric design of anisotropic shells: optimal form and material distribution. Comput Methods Appl Mech Eng 264:145–162

    MathSciNet  MATH  Google Scholar 

  68. Nguyen DM, Evgrafov A, Gravesen J (2012) Isogeometric shape optimization for electromagnetic scattering problems. Prog Electromagn Res B 45:117–146

    Google Scholar 

  69. Occelli M, Elguedj T, Bouabdallah S, Morançay L (2019) LR B-Splines implementation in the Altair RadiossTM solver for explicit dynamics IsoGeometric Analysis. Adv Eng Softw 131:166–185

    Google Scholar 

  70. Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1(1):11–17

    Google Scholar 

  71. Olhoff N, Rasmussen J, Lund E (1993) A method of “exact” numerical differentiation for error elimination in finite-element-based semi-analytical shape sensitivity analyses*. Mech Struct Mach 21(1):1–66

    MathSciNet  Google Scholar 

  72. Papadrakakis M, Lagaros ND, Tsompanakis Y, Plevris V (2001) Large scale structural optimization: computational methods and optimization algorithms. Arch Comput Methods Eng 8(3):239–301

    MathSciNet  MATH  Google Scholar 

  73. Park BU, Seo YD, Sigmund O, Youn SK (2013) Shape optimization of the stokes flow problem based on isogeometric analysis. Struct Multidiscip Optim 48(5):965–977

    MathSciNet  Google Scholar 

  74. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  75. Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071

    MathSciNet  MATH  Google Scholar 

  76. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Google Scholar 

  77. Shamanskiy A, Gfrerer MH, Hinz J, Simeon B (2020) Isogeometric parametrization inspired by large elastic deformation. Comput Methods Appl Mech Eng 363:112920

    MathSciNet  MATH  Google Scholar 

  78. Shimoda M, Liu Y (2014) A non-parametric free-form optimization method for shell structures. Struct Multidiscip Optim 50(3):409–423

    MathSciNet  Google Scholar 

  79. Shimoda M, Liu Y (2016) Node-based free-form optimization method for vibration problems of shell structures. Comput Struct 177:91–102

    Google Scholar 

  80. Shimoda M, Nagano T, Morimoto T, Liu Y, Shi JX (2016) Non-parametric free-form optimal design of frame structures in natural frequency problem. Int J Mech Sci 117:334–345

    Google Scholar 

  81. Sigmund O (1997) On the design of compliant mechanisms using topology optimization*. Mech Struct Mach 25(4):493–524

    Google Scholar 

  82. Stanford B, Beran P, Bhatia M (2014) Aeroelastic topology optimization of blade-stiffened panels. J Aircr 51(3):938–944

    Google Scholar 

  83. Taheri A, Hassani B (2014) Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies. Comput Methods Appl Mech Eng 277:46–80

    MathSciNet  MATH  Google Scholar 

  84. Tomlow J (2011) Gaudí’s reluctant attitude towards the inverted catenary. Proc Inst Civ Eng Eng Hist Herit 164(4):219–233

    Google Scholar 

  85. Van Keulen F, Haftka R, Kim N (2005) Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput Methods Appl Mech Eng 194(30–33):3213–3243

    MATH  Google Scholar 

  86. Verbart A, Langelaar M, van Keulen F (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663–679

    MathSciNet  Google Scholar 

  87. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33–40):2976–2988

    MathSciNet  MATH  Google Scholar 

  88. Wang W, Clausen PM, Bletzinger KU (2015) Improved semi-analytical sensitivity analysis using a secant stiffness matrix for geometric nonlinear shape optimization. Comput Struct 146:143–151

    Google Scholar 

  89. Wang Y, Wang Z, Xia Z, Hien Poh L (2018) Structural design optimization using isogeometric analysis: a comprehensive review. Comput Model Eng Sci 117(3):455–507

    Google Scholar 

  90. Wang ZP, Turteltaub S (2015) Isogeometric shape optimization for quasi-static processes. Int J Numer Methods Eng 104(5):347–371

    MathSciNet  MATH  Google Scholar 

  91. Wang ZP, Abdalla M, Turteltaub S (2017a) Normalization approaches for the descent search direction in isogeometric shape optimization. Comput Aided Des 82:68–78

    Google Scholar 

  92. Wang ZP, Turteltaub S, Abdalla M (2017b) Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach. Comput Struct 185:59–74

    Google Scholar 

  93. Weeger O, Narayanan B, Dunn ML (2018) Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures. Comput Methods Appl Mech Eng 345:26–51. https://doi.org/10.1016/j.cma.2018.10.038

    Article  MathSciNet  MATH  Google Scholar 

  94. Williams CJK (2014) What is a shell? In: Adriaenssens S, Block P, Veenendaal D, Williams C (eds) Shell structures for architecture. Routledge, London, pp 21–31

    Google Scholar 

  95. Xia Q, Shi T, Wang MY (2011) A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Struct Multidiscip Optim 43(4):473–485

    MathSciNet  MATH  Google Scholar 

  96. Xu M, Wang S, Xie X (2019) Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency. Front Mech Eng 14(2):222–234

    Google Scholar 

  97. Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2–3):98–105

    Google Scholar 

  98. Zhu B et al (2020) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hirschler.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirschler, T., Bouclier, R., Duval, A. et al. A New Lighting on Analytical Discrete Sensitivities in the Context of IsoGeometric Shape Optimization. Arch Computat Methods Eng 28, 2371–2408 (2021). https://doi.org/10.1007/s11831-020-09458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09458-6

Navigation