Skip to main content
Log in

Coupled damage-plasticity constitutive model and direct stress interpolation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we develop the governing equations of the coupled damage-plasticity model, which is capable of representing the main mechanisms of inelastic behavior including irreversible plastic deformation, change of elastic response and the localized failure. We show in particular how such model should be implemented within the stress-based variational formulation, providing an important advantage for local computation of the internal variables, which thus remains very robust and even non-iterative for the case of linear hardening model. Several simple examples are presented in order to illustrate the kind of response the model can represent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gurson A (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media. J Eng Mater Tech 99: 2–15

    Google Scholar 

  • Hill R (1950). The mathematical theory of plasticity. Clarenden Press, Oxford

    MATH  Google Scholar 

  • Ibrahimbegovic A, Gharzeddine F and Chorfi L (1998). Classical plasticity and viscoplasticity reformulated: theoretical basis and numerical implementation. Int J Numer Meth Eng 42: 1499–1535

    Article  MATH  Google Scholar 

  • Ibrahimbegovic A, Markovič D and Gatuingt F (2003). Constitutive model of coupled damage-plasticity and its finite element implementation. Revue européenne des éléments finis 12: 381–405

    Article  MATH  Google Scholar 

  • Ibrahimbegovic A and Brancherie D (2003). Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comput Mech 31: 88–100

    Article  MATH  Google Scholar 

  • Ibrahimbegovic A (2006). Mécanique non linéaire des solides déformables: Formulation théorique et résolution numérique par éléments finis. Hermes-Science-Lavoisier, Paris

    MATH  Google Scholar 

  • Ju W (1989). On energy-based coupled elasto-plastic damage theories: constitutive modeling and computational aspects. Int J Sol Struct 25: 803–833

    Article  MATH  Google Scholar 

  • Kucerova A, Brancherie D, Ibrahimbegovic A, Zeman J, Bittnar Z (2007) Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part II: Identification from tests under heterogeneous stress field. Comput Struct 73 (in press)

  • Krajcinovic D (1996). Damage Mechanics. North Holland, Amsterdam

    Google Scholar 

  • Lemaître J (1985). Coupled elasto-plasticity and damage constitutive equations. Comput Meth Appl Mech Eng 51: 31–49

    Article  MATH  Google Scholar 

  • Lemaître J and Chaboche J-L (1988). Mécanique des matériaux solides (in French). Dunod, Paris

    Google Scholar 

  • Lubliner J (1990). Plasticity Theory. Macmillan, New York

    MATH  Google Scholar 

  • Meschke G, Lackner R and Mang HA (1998). An anisotropic elastoplastic-damage model for plain concrete. Int J Numer Method Eng 42: 703–727

    Article  MATH  Google Scholar 

  • Needleman A and Tvergaard V (1984). An analysis of ductile rupture in notched bar. J Mech Phy Sol 32: 461–469

    Article  Google Scholar 

  • Pian T and Sumihara K (1984). Rational approach for assumed stress finite elements. Int J Numer Method Eng 20: 1685–1638

    Article  MATH  Google Scholar 

  • Ramtani S (1990) Contribution à la modélisation du comportement multiaxial du béton endommagé avec la description du caractère unilatéral (in French). Thèse de doctorat, Université Paris 6

  • Simo JC and Ju W (1987). Stress and strain-based continuum damage model I. Formulation, II. Computational aspects. Int J Sol Struct 23: 821–869

    Article  MATH  Google Scholar 

  • Simo JC, Kennedy JG and Taylor RL (1989). Complementary mixed finite element formulations for elastoplasticity. Comput Meth Appl Mech Eng 74: 177–206

    Article  MATH  MathSciNet  Google Scholar 

  • Simo JC and Hughes T (1998). Computational inelasticity, vol 7 of interdisciplinary applied mathematics. Springer, Berlin

    Google Scholar 

  • Strang G (1986). Introduction to applied mathematics. Wellesley Cambridge Press, Wellesley

    MATH  Google Scholar 

  • Taylor RL (2005) FEAP: A Finite Element Analysis Program, User manual and Programmer manual, version 7.4. Department of Civil and Environmental Engineering, University of California, Berkeley, California

  • Zienkiewicz O and Taylor RL (2000). The finite element method: the basis, vol 1, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ibrahimbegovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahimbegovic, A., Jehel, P. & Davenne, L. Coupled damage-plasticity constitutive model and direct stress interpolation. Comput Mech 42, 1–11 (2008). https://doi.org/10.1007/s00466-007-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0230-6

Keywords

Navigation