Skip to main content
Log in

Heat transfer analysis of composite slabs using meshless element Free Galerkin method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with three dimensional heat transfer analysis of composite slabs using meshless element free Galerkin method. The element free Galerkin method (EFG) method utilizes moving least square (MLS) approximants to approximate the unknown function of temperature Tx). These approximants are constructed by using a weight function, a basis function and a set of coefficients that depends on position. Penalty and Lagrange multiplier techniques have been used to enforce the essential boundary conditions. MATLAB codes have been developed to obtain the EFG results. Two new basis functions namely trigonometric and polynomial have been proposed. A comparison has been made among the results obtained using existing (linear) and proposed (trigonometric and polynomial) basis functions for three dimensional heat transfer in composite slabs. The effect of penalty parameter on EFG results has also been discussed. The results obtained by EFG method are compared with those obtained by finite element method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a j x):

non constant coefficients

c :

specific heat of the material

c xI , c yI , c zI  :

distances to the nearest neighbors in xy and z directions

d max :

scaling parameter

% diff:

percentage difference of EFG results

q̄:

rate of internal heat generation /volume

h :

convective heat transfer coefficient

k :

coefficient of thermal conductivity

LMM:

Lagrange multiplier method

PM:

penalty method

Poly:

polynomial basis function

p j x:

monomial basis function

m :

number of terms in the basis

n :

number of nodes in the domain & of influence

n̄:

number of time steps

n′:

outward normal to the surface

n′′:

x,y & z

r x r y , r z :

normalized radii along xy and & z directions

S i :

surfaces of three dimensional models

t :

time

t̄:

T{∂t

Trig:

trigonometric basis function

T h x:

moving least square approximant

T S_i :

surface temperature

T :

surrounding fluid temperature

V :

three dimensional domain (V 1V 2)

x I y I z I :

coordinates of the I th node

w(xx I ):

weight function

α:

penalty parameter

λ:

Lagrangian multiplier

Φ I (x):

shape function

ρ:

density of the material

References

  1. 1. Monaghan JJ. (1998). An introduction to SPH. Comput Phys Commun 48:89–96

    Article  Google Scholar 

  2. 2. Monaghan JJ. (1992). Smoothed particle hydrodynamics. Annu Rev Astron Astrophy 30:43–574

    Google Scholar 

  3. 3. Nayroles B., Touzot G., Villon P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  4. 4. Marechal Y., Coulomb JL., Meunier G. (1993). Use of diffuse element for electromagnetic field computations. IEEE Trans Magn 29:1475–1478

    Article  Google Scholar 

  5. 5. Nayroles B., Touzot BG., Villon P. (1994). Using the diffuse approximation for optimizing the location of anti-sound sources. J Sound Vib 1:1–21

    Article  Google Scholar 

  6. 6. Liu WK., Jun S., Zhang YF. (1995). Reproducing kernel particle methods. Int J Numer Meth Eng 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  7. 7. Liu WK., Jun S., Li S., Adee J., Belytschko T. (1995). Reproducing kernel particle methods for structural dynamics. Int J Numer Meth Eng 38:1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. Liu WK., Chen Y., Jun S., Chen JS., Belytschko T., Pan C., Uras RA., Chang CT. (1996). Overview and applications of the reproducing kernel particle methods. Arch Comput Meth Eng 33–80

    Google Scholar 

  9. 9. Jun S., Liu WK., Belytschko T. (1998). Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Meth Eng 41:137–166

    Article  MATH  Google Scholar 

  10. 10. Babuska I., Melenk JM. (1997). The partition of unity method. Int J Numer Meth Eng 40:727–758

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. Yagawa g., Yamada T. (1996). Free mesh method, a new meshless finite element method. Comput Mech 18:383–386

    Article  MATH  Google Scholar 

  12. 12. Belytschko T., Lu YY., Gu L. (1994). Element free Galerkin methods. Int J Numer Meth Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. Lu YY., Belytschko T., Gu L. (1994). A new implementation of the element free Galerkin method. Comput Meth Appl Mech Eng 113:397–414

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. (1996). Meshless methods: an overview and recent developments. Comput Meth Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  15. 15. Dolbow J., Belytschko T. (1998). An introduction to programming the meshless element free Galerkin method. Arch Comput Meth Eng 5:207–241

    Article  MathSciNet  Google Scholar 

  16. 16. Liu WK., Chen Y., Chang CT., Belytschko T. (1996). Advances in multiple scale kernel particle methods. Comput Mech 18:73–111

    Article  MATH  MathSciNet  Google Scholar 

  17. 17. Krongauz Y., Belytschko T. (1997). A Petrov-Galerkin diffuse element method (PG-DEM) and its comparison to EFG. Comput Mech 19:327–333

    Article  MATH  MathSciNet  Google Scholar 

  18. 18. Liu WK., Liu S., Belytschko T. (1997). Moving least square kernel Galerkin method (1) methodology and convergence. Comput Meth Appl Mech Eng 13:113–154

    Article  MATH  MathSciNet  Google Scholar 

  19. 19. Liu WK., Hao S., Belytschko T., Li S., Chang CT. (1999). Multiple scale meshfree methods for damage fracture and localization. Comput Material Sci 16:197–205

    Article  Google Scholar 

  20. 20. Belytschko T., Krongauz Y., Dolbow J., Gerlach C. (1998). On the completeness of meshfree particle methods. Int J Numer Meth Eng 43:785–819

    Article  MATH  MathSciNet  Google Scholar 

  21. 21. Belytschko T., Guo Y., Liu WK., Xiao SP. (2000). A unified stability analysis of meshless particle methods. Int J Numer Meth Eng 48:1359–1400

    Article  MATH  MathSciNet  Google Scholar 

  22. 22. Zhu T., Zhang JD., Atluri SN. (1998). A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput Mech 22:174–186

    Article  MATH  MathSciNet  Google Scholar 

  23. 23. Atluri SN., Zhu T. (1998). A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. Sukumar N., Moran B., Belytschko T. (1998). The natural element method in solid mechanics. Int J Numer Meth Eng 43:839–887

    Article  MATH  MathSciNet  Google Scholar 

  25. 25. De S., Bathe KJ. (2000). The method of finite spheres. Comput Mech 25:329–345

    Article  MATH  MathSciNet  Google Scholar 

  26. 26. Sukumar N., Moran B., Yu Semenov A., Belikov VV. (2001). Natural neighbor Galerkin methods. Int J Numer Meth Eng 50:1–27

    Article  MATH  Google Scholar 

  27. 27. Belytschko T., Gu L., Lu YY. (1994). Fracture and crack growth by element-free Galerkin methods. Model Simul Material Sci Eng 2:519–534

    Article  Google Scholar 

  28. 28. Sukumar N., Moran B., Black T., Belytschko T. (1997). An element-free Galerkin method for three-dimensional fracture mechanics. Comput Mech 20:170–175

    Article  MATH  Google Scholar 

  29. 29. Belytschko T., Lu YY., Gu L., Tabbara M. (1995). Element-free Galerkin methods for static and dynamic fracture. Int J Solid Struct 32:2547–2570

    Article  MATH  Google Scholar 

  30. 30. Belytschko T., Tabbara M. (1996). Dynamic fracture using element-free Galerkin methods. Int J Numer Meth Eng 39:923–938

    Article  MATH  Google Scholar 

  31. 31. Belytschko T., Organ D., Gerlach C. (2000). Element-free Galerkin methods for dynamic fracture in concrete. Comput Meth Appl Mech Eng 187:285–399

    Article  Google Scholar 

  32. 32. Lu YY., Belytschko T., Tabbara M. (1995). Element-free Galerkin methods for wave propagation and dynamic fracture. Comput Meth Appl Mech Eng 126:131–153

    Article  MATH  MathSciNet  Google Scholar 

  33. 33. Belytschko T., Lu YY., Gu L. (1995). Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  34. 34. Krysl P., Belytschko T. (1999). The element free-Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int J Numer Meth Eng 44:767–800

    Article  MATH  Google Scholar 

  35. 35. Krysl P., Belytschko T. (1996). Analysis of thin plates by element-free Galerkin method. Comput Mech 17:26–35

    Article  MathSciNet  Google Scholar 

  36. 36. Krysl P., Belytschko T. (1996). Analysis of thin shells by element-free Galerkin method. Int J Solid Struct 33:3057–3080

    Article  MATH  Google Scholar 

  37. Xuan L., Zeng Z., Shanker B., Udpa L., A Meshless element-free Galerkin method in NDT applications. 28th Annual Review of Progress in Quantitative Nondestructive Evaluation, Maine USA, July 2001, Published in AIP conference Proceeding

  38. 38. Cingoski V., Miyamoto N., Yamashita H. (1998). Element-free Galerkin method for electromagnetic field computations. IEEE Trans Magn 34:3236–3239

    Article  Google Scholar 

  39. 39. Li G., Belytschko T. (2001). Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18:62–78

    Article  MATH  Google Scholar 

  40. 40. Singh IV., Sandeep K., Prakash R. (2003). Heat transfer analysis of two-dimensional fins using meshless element-free Galerkin method. Numer Heat Tr-Part A 44:73–84

    Article  Google Scholar 

  41. 41. Singh IV., Sandeep K., Prakash R. (2004). Application of meshless element free Galerkin method in two-dimensional heat conduction problems. Comput Assist Mech Eng Sci 11:265–274

    MATH  Google Scholar 

  42. 42. Singh IV., Sandeep K., Prakash R. (2002). The element free Galerkin method in three dimensional steady state heat conduction. Int J Comput Eng Sci 3(3):291–303

    Article  Google Scholar 

  43. 43. Lancaster P., Salkauskas K. (1981). Surfaces generated by moving least square methods. Math Comput 37:141–158

    Article  MATH  MathSciNet  Google Scholar 

  44. 44. Singh IV. (2004). Application of meshless EFG method in fluid flow problems. “Sadhana, Indian Academy of Science”. 29:285–296

    MATH  Google Scholar 

  45. 45. Zhu T., Atluri SN. (1998). A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222

    Article  MATH  MathSciNet  Google Scholar 

  46. 46 Krongauz Y., Belytschko T. (1996). Enforcement of essential boundary conditions in meshless approximation using finite elements. Comput Meth Appl Mech Eng 131:1335–1345

    Article  MathSciNet  Google Scholar 

  47. 47. Kaljevic I., Saigal S. (1997). An improved element free Galerkin formulation. Int J Numer Meth Eng 40:2953–2974

    Article  MATH  MathSciNet  Google Scholar 

  48. 48. Rao BN., Rahman S. (2000). An efficient meshless method for fracture analysis of cracks. Comput Mech 26:398–408

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I.V. Heat transfer analysis of composite slabs using meshless element Free Galerkin method. Comput Mech 38, 521–532 (2006). https://doi.org/10.1007/s00466-005-0001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-005-0001-1

Keywords

Navigation