Skip to main content
Log in

A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair

  • New Technology
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The objective of this review was to provide an overview of the components that comprise each of the eight barrier mesh prostheses commonly utilized for LVHR and to review the current literature related to the characteristics and effectiveness of these materials to guide the general surgeon in selecting the most appropriate material for LVHR.

Methods

Composite prostheses with permanent barriers (Bard™ Composix™ E/X, Bard™ Composix™ L/P, and DUALMESH® Biomaterial) were compared to composite prostheses with absorbable barriers (C-QUR™ Mesh, PROCEED™ Surgical Mesh, Bard™ Sepramesh™ IP Composite, Parietex™ Composite, and PHYSIOMESH™) using scanning electron microscopy and a review of the current preclinical and clinical literature.

Results

Clinical studies and preclinical animal models have attempted to determine the adhesion characteristics and effectiveness of barrier mesh prostheses available for ventral hernia repair applications. However, it is difficult to make any definitive statements about the adhesion characteristics and effectiveness of these materials because all meshes were not included in all studies and likewise not compared under identical conditions. Overall, Parietex™ Composite and DUALMESH® Biomaterial were cited most frequently for improvement of adhesion characteristics, followed closely by Bard™ Sepramesh™ IP Composite and C-QUR™ Mesh. Bard™ Composix™, PROCEED™ Surgical Mesh, and uncoated polypropylene were cited most frequently as having the most tenacious and extensive adhesions.

Conclusions

Differences observed between the various barrier prostheses are likely attributable to the chemical composition of the barrier or the conditions required for resorption and metabolism of the barrier components. It is likely that the components of these barriers incite a wide range of inflammatory responses resulting in the range of adhesion coverage and tenacity observed in the preclinical and clinical studies reviewed. Clinical trials are needed to more appropriately define the clinical effectiveness of these barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burger JW, Luijendijk RW, Hop WC, Halm JA, Verdaasdonk EG, Jeekel J (2004) Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg 240:578–583

    PubMed  Google Scholar 

  2. Heniford BT, Park A, Ramshaw BJ, Voeller G (2003) Laparoscopic repair of ventral hernias: nine years’ experience with 850 consecutive hernias. Ann Surg 238:391–399

    PubMed  Google Scholar 

  3. Pierce RA, Spitler JA, Frisella MM, Matthews BD, Brunt LM (2007) Pooled data analysis of laparoscopic vs. open ventral hernia repair: 14 years of patient data accrual. Surg Endosc 21:378–386

    Article  PubMed  Google Scholar 

  4. Ray NF, Denton WG, Thamer M, Henderson SC, Perry S (1998) Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 186:1–9

    Article  PubMed  CAS  Google Scholar 

  5. Gray SH, Vick CC, Graham LA, Finan KR, Neumayer LA, Hawn MT (2008) Risk of complications from enterotomy or unplanned bowel resection during elective hernia repair. Arch Surg 143:582–586

    Article  PubMed  Google Scholar 

  6. Halm JA, de Wall LL, Steyerberg EW, Jeekel J, Lange JF (2007) Intraperitoneal polypropylene mesh hernia repair complicates subsequent abdominal surgery. World J Surg 31:423–429

    Article  PubMed  CAS  Google Scholar 

  7. Usher FC, Ochsner J, Tuttle LJ (1958) Use of Marlex mesh in the repair of incisional hernias. Am Surg 24:969–974

    PubMed  CAS  Google Scholar 

  8. (2007) PROCEED Surgical mesh instructions for use

  9. (2005) Sepramesh IP composite instructions for use

  10. Pierce RA, Perrone J, Nimeri A, Sexton J, Walcutt J, Frisella M, Matthews B (2009) 120-day comparative analysis of adhesion grade and quantity, mesh contraction, and tissue response to a novel omega-3 fatty acid bioabsorbable barrier macroporous mesh after intraperitoneal placement. Surg Innov 16:46–54

    Article  PubMed  Google Scholar 

  11. (2011) PHYSIOMESH instructions for use. Ethicon, Inc

  12. Tingstedt B, Isaksson K, Andersson E, Andersson R (2007) Prevention of abdominal adhesions—present state and what’s beyond the horizon? Eur Surg Res 39:259–268

    Article  PubMed  CAS  Google Scholar 

  13. Schreinemacher MH, Emans PJ, Gijbels MJ, Greve JW, Beets GL, Bouvy ND (2009) Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br J Surg 96:305–313

    Article  PubMed  CAS  Google Scholar 

  14. (2005) Bard* Composix E/X mesh instructions for use

  15. (2006) Composix L/P instructions for use. CR Bard

  16. Deeken CR, Abdo MS, Frisella MM, Matthews BD (2011) Physicomechanical evaluation of absorbable and nonabsorbable barrier composite meshes for laparoscopic ventral hernia repair. Surg Endosc 25:1541–1552

    Article  PubMed  Google Scholar 

  17. (2007) DualMesh biomaterial instructions for use

  18. (2008) Gore DUALMESH PLUS biomaterial instructions for use

  19. Fox C et al (1991) Infection-resistant compositions, medical devices and surfaces and methods for preparing the same. U.S. Patent #5019096

  20. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science. Academic Press, San Diego

    Google Scholar 

  21. Laurent TC (1987) Biochemistry of hyaluronan. Acta Otolaryngol Suppl 442:7–24

    Article  PubMed  CAS  Google Scholar 

  22. Turaev A (1995) Dependence of the biodegradability of carboxymethylcellulose on its supermolecular structure and molecular parameters. Chem Nat Compds 31:254–259

    Article  Google Scholar 

  23. Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble polymers administered via different routes. J Pharm Sci 84:349–354

    Article  PubMed  CAS  Google Scholar 

  24. Earle DB, Mark LA (2008) Prosthetic material in inguinal hernia repair: how do I choose? Surg Clin North Am 88:179–201

    Article  PubMed  Google Scholar 

  25. (2009) C-QUR mesh instructions for use

  26. (2007) What is atrium’s omega-3–coated mesh and what happens following implantation? Atrium Medical Corp Technical Data Report No 010. http://www.atriummed.com/EN/Biosurgery/cqur-data.asp

  27. Kabara J, Swieczkowski D, Conley AJ, Truant J (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    PubMed  CAS  Google Scholar 

  28. Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T (1987) Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31:27–31

    PubMed  CAS  Google Scholar 

  29. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik JM (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446

    Article  PubMed  CAS  Google Scholar 

  30. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, Blumberg RS, Serhan CN (2005) Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA 102:7671–7676

    Article  PubMed  CAS  Google Scholar 

  31. (2010) Parietex composite instructions for use

  32. Ory F et al (2002) Composite prosthesis for preventing post-surgical adhesions and method for obtaining same. U.S. Patent #09463313

  33. Tayot J et al (2002) Collagenic material useful in particular for preventing post-operative adhesions. U.S. Patent #6391939

  34. van Amerongen MJ, Harmsen MC, Petersen AH, Kors G, van Luyn MJ (2006) The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials 27:2247–2257

    Article  PubMed  Google Scholar 

  35. Campbell M (1995) Biochemistry. Saunders, New York

    Google Scholar 

  36. Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123

    Article  PubMed  Google Scholar 

  37. Pillai CK, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366

    Article  PubMed  CAS  Google Scholar 

  38. Ashton W et al (1968) Oxidized cellulose product and method for preparing the same. U.S. Patent #3364200

  39. Boardman F et al (1993) Cellulose oxidation by a perfluoronated hydrocarbon solution of nitrogen dioxide. U.S. Patent #5180398

  40. Wiseman D et al (2003) Bioabsorbable medical devices from oxidized polysaccharides. U.S. Patent #20030073663

  41. Dimitrijevich SD, Tatarko M, Gracy RW, Linsky CB, Olsen C (1990) Biodegradation of oxidized regenerated cellulose. Carbohydr Res 195:247–256

    Article  PubMed  CAS  Google Scholar 

  42. Dimitrijevich SD, Tatarko M, Gracy RW, Wise GE, Oakford LX, Linsky CB, Kamp L (1990) In vivo degradation of oxidized, regenerated cellulose. Carbohydr Res 198:331–341

    Article  PubMed  CAS  Google Scholar 

  43. Nary FH, Matsumoto MA, Batista AC, Lopes LC, de Goes FC, Consolaro A (2002) Comparative study of tissue response to polyglecaprone 25, polyglactin 910 and polytetrafluoroethylene suture materials in rats. Braz Dent J 13:86–91

    Google Scholar 

  44. Arnaud JP, Hennekinne-Mucci S, Pessaux P, Tuech JJ, Aube C (2003) Ultrasound detection of visceral adhesion after intraperitoneal ventral hernia treatment: a comparative study of protected versus unprotected meshes. Hernia 7:85–88

    Article  PubMed  CAS  Google Scholar 

  45. Cobb WS, Harris JB, Lokey JS, McGill ES, Klove KL (2003) Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am Surg 69:784–787

    PubMed  Google Scholar 

  46. Koehler RH, Begos D, Berger D, Carey S, LeBlanc K, Park A, Ramshaw B, Smoot R, Voeller G (2003) Minimal adhesions to ePTFE mesh after laparoscopic ventral incisional hernia repair: reoperative findings in 65 cases. JSLS 7:335–340

    PubMed  Google Scholar 

  47. Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133:378–382

    Article  PubMed  CAS  Google Scholar 

  48. Jenkins ED, Yom V, Melman L, Brunt LM, Eagon JC, Frisella MM, Matthews BD (2010) Prospective evaluation of adhesion characteristics to intraperitoneal mesh and adhesiolysis-related complications during laparoscopic re-exploration after prior ventral hernia repair. Surg Endosc 24:3002–3007

    Article  PubMed  Google Scholar 

  49. Chelala E, Debardemaeker Y, Elias B, Charara F, Dessily M, Alle JL (2010) Eighty-five redo surgeries after 733 laparoscopic treatments for ventral and incisional hernia: adhesion and recurrence analysis. Hernia 14:123–129

    Article  PubMed  CAS  Google Scholar 

  50. Wassenaar EB, Schoenmaeckers EJ, Raymakers JT, Rakic S (2010) Subsequent abdominal surgery after laparoscopic ventral and incisional hernia repair with an expanded polytetrafluoroethylene mesh: a single institution experience with 72 reoperations. Hernia 14:137–142

    Article  PubMed  CAS  Google Scholar 

  51. Duffy AJ, Hogle NJ, LaPerle KM, Fowler DL (2004) Comparison of two composite meshes using two fixation devices in a porcine laparoscopic ventral hernia repair model. Hernia 8:358–364

    Article  PubMed  CAS  Google Scholar 

  52. McGinty JJ, Hogle NJ, McCarthy H, Fowler DL (2005) A comparative study of adhesion formation and abdominal wall ingrowth after laparoscopic ventral hernia repair in a porcine model using multiple types of mesh. Surg Endosc 19:786–790

    Article  PubMed  CAS  Google Scholar 

  53. Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus proceed versus parietex composite. Surg Endosc 21:629–633

    Article  PubMed  CAS  Google Scholar 

  54. Gonzalez R, Rodeheaver GT, Moody DL, Foresman PA, Ramshaw BJ (2004) Resistance to adhesion formation: a comparative study of treated and untreated mesh products placed in the abdominal cavity. Hernia 8:213–219

    Article  PubMed  CAS  Google Scholar 

  55. Gaertner WB, Bonsack ME, Delaney JP (2010) Visceral adhesions to hernia prostheses. Hernia 14:375–381

    Article  PubMed  CAS  Google Scholar 

  56. Kayaoglu HA, Ozkan N, Hazinedaroglu SM, Ersoy OF, Erkek AB, Koseoglu RD (2005) Comparison of adhesive properties of five different prosthetic materials used in hernioplasty. J Invest Surg 18:89–95

    Article  PubMed  Google Scholar 

  57. Matthews BD, Mostafa G, Carbonell AM, Joels CS, Kercher KW, Austin C, Norton HJ, Heniford BT (2005) Evaluation of adhesion formation and host tissue response to intra-abdominal polytetrafluoroethylene mesh and composite prosthetic mesh. J Surg Res 123:227–234

    Article  PubMed  CAS  Google Scholar 

  58. Matthews BD, Pratt BL, Pollinger HS, Backus CL, Kercher KW, Sing RF, Heniford BT (2003) Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. J Surg Res 114:126–132

    Article  PubMed  CAS  Google Scholar 

  59. Novitsky YW, Harrell AG, Cristiano JA, Paton BL, Norton HJ, Peindl RD, Kercher KW, Heniford BT (2007) Comparative evaluation of adhesion formation, strength of ingrowth, and textile properties of prosthetic meshes after long-term intra-abdominal implantation in a rabbit. J Surg Res 140:6–11

    Article  PubMed  CAS  Google Scholar 

  60. Greenawalt KE, Butler TJ, Rowe EA, Finneral AC, Garlick DS, Burns JW (2000) Evaluation of Sepramesh biosurgical composite in a rabbit hernia repair model. J Surg Res 94:92–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the efforts of Hilda Kabiru and Jocelyn Prowse at Atrium Medical Corporation for technical expertise and assistance with the scanning electron micrographs.

Disclosures

Dr. Deeken is a consultant for Atrium Medical Corporation and Davol Incorporated. Dr. Faucher is an employee of Atrium Medical Corporation. Dr. Matthews is a consultant for Atrium Medical Corporation and Ethicon Incorporated. He also receives honoraria and research/equipment support from Atrium Medical Corporation, Ethicon EndoSurgery, Karl Storz Endoscopy, Stryker Endoscopy, and W.L. Gore & Associates, Incorporated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey R. Deeken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeken, C.R., Faucher, K.M. & Matthews, B.D. A review of the composition, characteristics, and effectiveness of barrier mesh prostheses utilized for laparoscopic ventral hernia repair. Surg Endosc 26, 566–575 (2012). https://doi.org/10.1007/s00464-011-1899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-011-1899-3

Keywords

Navigation