Skip to main content
Log in

Bacterial clearance of biologic grafts used in hernia repair: an experimental study

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Biologic grafts used in ventral hernia repair are derived from various sources and undergo different post-tissue-harvesting processing, handling, and sterilization techniques. It is unclear how these various characteristics impact graft response in the setting of contamination. We evaluated four materials in an infected hernia repair animal model using fluorescence imaging and quantitative culture studies.

Methods

One hundred seven rats underwent creation of a chronic hernia. They were then repaired with one synthetic polyester control material (n = 12) and four different biologic grafts (n = 24 per material). Biologic grafts evaluated included Surgisis (porcine small intestinal submucosa), Permacol (crosslinked porcine dermis), Xenmatrix (noncrosslinked porcine dermis), and Strattice (noncrosslinked porcine dermis). Half of the repairs in each group were inoculated with Staphylococcus aureus at 104 CFU/ml and survived for 30 days without systemic antibiotics. Animals then underwent fluorescence imaging and quantitative bacterial studies.

Results

All clean repairs remained sterile. Rates of bacterial clearance were as follows: polyester synthetic 0%, Surgisis 58%, Permacol 67%, Xenmatrix 75%, and Strattice 92% (P = 0.003). Quantitative bacterial counts had a similar trend in bacterial clearance: polyester synthetic 1 × 106 CFU/g, Surgisis 4.3 × 105 CFU/g, Permacol 1.7 × 103 CFU/g, Xenmatrix 46 CFU/g, and Strattice 31 CFU/g (P = 0.001). Fluorescence imaging was unable to detect low bacterial fluorescence counts observed on bacterial studies.

Conclusion

Biologic grafts, in comparison to synthetic material, are able to clear a Staphylococcus aureus contamination; however, they are able to do so at different rates. Bacterial clearance correlated to the level of residual bacterial burden observed in our study. Post-tissue-harvesting processing, handling, and sterilization techniques may contribute to this observed difference in ability to clear bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bellows CF, Alder A, Helton WS (2006) Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Device 3(5):657–675

    Article  Google Scholar 

  2. Leid JG, Shirtliff ME, Costerton JW, Stoodley AP (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345

    Article  PubMed  CAS  Google Scholar 

  3. Kelley P, Gordley K, Higuera S, Hicks J, Hollier LH (2005) Assessing the long-term retention and permanency of acellular cross-linked porcine dermal collagen as a soft-tissue substitute. Plast Reconstr Surg 116(6):1780–1784

    Article  PubMed  CAS  Google Scholar 

  4. Richter G, Smith J, Spencer H, Fan C, Vural E (2007) Histological comparison of implanted cadaveric and porcine dermal matrix grafts. Otolaryngol Head Neck Surg 137(2):239–242

    Article  PubMed  Google Scholar 

  5. Konstantinovic ML, Lagae P, Zheng F, Verbeken EK, De Ridder D, Deprest JA (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560

    Article  PubMed  CAS  Google Scholar 

  6. Macleod TM, Williams G, Sanders R, Green CJ (2005) Histological evaluation of Permacol as a subcutaneous implant over a 20-week period in the rat model. Br J Plast Surg 58(4):518–532

    Article  PubMed  CAS  Google Scholar 

  7. Petter-Puchner AH, Fortelny RH, Mittermayr R, Walder N, Ohlinger W, Redl H (2006) Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc 20(6):942–946

    Article  PubMed  CAS  Google Scholar 

  8. Petterpuchner A, Fortelny R, Walder N, Mittermayr R, Ohlinger W, Vangriensven M, Redl H (2008) Adverse effects associated with the use of porcine cross-linked collagen implants in an experimental model of incisional hernia repair. J Surg Res 145(1):105–110

    Article  CAS  Google Scholar 

  9. Silverman RP, Li EN, Holton LH, Sawan KT, Goldberg NH (2004) Ventral hernia repair using allogenic acellular dermal matrix in a swine model. Hernia 8(4):336–342

    Article  PubMed  CAS  Google Scholar 

  10. Eppley BL (2001) Experimental assessment of the revascularization of acellular human dermis for soft-tissue augmentation. Plast Reconstr Surg 107(3):757–762

    Article  PubMed  CAS  Google Scholar 

  11. Menon NG, Rodriguez ED, Byrnes CK, Girotto JA, Goldberg NH, Silverman RP (2003) Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg 50(5):523–527

    Article  PubMed  Google Scholar 

  12. Poulose BK, Scholz S, Moore DE, Schmidt CR, Grogan EL, Lao OB, Nanney L, Davidson J, Holzman MD (2005) Physiologic properties of small intestine submucosa. J Surg Res 123(2):262–267

    Article  PubMed  CAS  Google Scholar 

  13. Rauth TP, Poulose BK, Nanney LB, Holzman MD (2007) A comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa––implications for patch repair in ventral herniorrhaphy. J Surg Res 143(1):43–49

    Article  PubMed  CAS  Google Scholar 

  14. Sandor M, Xu H, Connor J, Lombardi J, Harper JR, Silverman RP, McQuillan DJ (2008) Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng Part A 14(12):2021–2031

    Article  PubMed  CAS  Google Scholar 

  15. Kaleya RN (2005) Evaluation of implant/host tissue interactions following intraperitoneal implantation of porcine dermal collagen prosthesis in the rat. Hernia 9(3):269–276

    Article  PubMed  Google Scholar 

  16. Gaertner WB, Bonsack ME, Delaney JP (2007) Experimental evaluation of four biologic prostheses for ventral hernia repair. J Gastrointest Surg 11(10):1275–1285

    Article  PubMed  Google Scholar 

  17. Soiderer EE, Lantz GC, Kazacos EA, Hodde JP, Wiegand RE (2004) Morphologic study of three collagen materials for body wall repair. J Surg Res 118(2):161–175

    Article  PubMed  CAS  Google Scholar 

  18. Ayubi FS, Armstrong PJ, Mattia MS, Parker DM (2008) Abdominal wall hernia repair: a comparison of Permacol and Surgisis grafts in a rat hernia model. Hernia 12(4):373–378

    Article  PubMed  CAS  Google Scholar 

  19. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202

    Article  PubMed  Google Scholar 

  20. Carbonell AM, Matthews BD, Dreau D, Foster M, Austin CE, Kercher KW, Sing RF, Heniford BT (2005) The susceptibility of prosthetic biomaterials to infection. Surg Endosc 19(3):430–435

    Article  PubMed  CAS  Google Scholar 

  21. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593

    Article  PubMed  CAS  Google Scholar 

  22. Milburn ML, Holton LH, Chung TL, Li EN, Bochicchio GV, Goldberg NH, Silverman RP (2008) Acellular dermal matrix compared with synthetic implant material for repair of ventral hernia in the setting of peri-operative Staphylococcus aureus implant contamination: a rabbit model. Surg Infect 9(4):433–442

    Article  Google Scholar 

  23. Liang H-C, Chang Y, Hsu C-K, Lee M-H, Sung H-W (2004) Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 25(17):3541–3552

    Article  PubMed  CAS  Google Scholar 

  24. Jarman-Smith ML, Bodamyali T, Stevens C, Howell JA, Horrocks M, Chaudhuri JB (2004) Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med 15(8):925–932

    Article  PubMed  CAS  Google Scholar 

  25. Krizek TJ, Robson MC (1975) Evolution of quantitative bacteriology in wound management. Am J Surg 130(5):579–584

    Article  PubMed  CAS  Google Scholar 

  26. Liedberg NCF, Reiss E, Artz CP (1955) The effect of bacteria on the take of split-thickness skin grafts in rabbits. Ann Surg 142(1):92–96

    Article  PubMed  CAS  Google Scholar 

  27. Engelsman A, van Dam G, van der Mei H, Busscher H, Ploeg R (2010) In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg 251(1):133–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Joeseph Furlan, BA, and Ki Hoon Jung, MD, for their invaluable contribution to this work. This research was supported by a 2009 SAGES Educational Foundation grant awarded to Dr. Rosen and a Case Western Reserve University CTSA Grant awarded to Dr. Broome (UL1 RR024989).

Disclosures

Dr. Rosen has served as consultant and received honoraria from Covidien, LifeCell, and Gore. Drs. K. C. Harth, A.-M. Broome, M. R. Jacobs, J. A. Blatnik, F. Zeinali, and Mrs. S. Bajaksouzian have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rosen.

Additional information

Presented at the 12th WCES, April 14--17, 2010, National Harbor, MD

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harth, K.C., Broome, AM., Jacobs, M.R. et al. Bacterial clearance of biologic grafts used in hernia repair: an experimental study. Surg Endosc 25, 2224–2229 (2011). https://doi.org/10.1007/s00464-010-1534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-010-1534-8

Keywords

Navigation