Skip to main content

Advertisement

Log in

Bacterial adhesion to biological versus polymer prosthetic materials used in abdominal wall defect repair: do these meshes show any differences in vitro?

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Purpose

Although clinical data suggest the similar performance of collagen-based biological prosthetic materials to some polymer materials, the use of a biomesh for abdominal hernia repair in a setting of infection is controversial. This in vitro study compares the adhesion of two Staphylococcus strains to polymer and biological meshes.

Methods

Sterile fragments of Optilene® (Op), Surgipro™ (Surg), Preclude® (Precl), TIGR® (TIGR), Bio-A® (BioA), Permacol™ (Perm), Surgisis® (SIS), and Tutomesh® (Tuto) were inoculated with 106 CFU of S. aureus (Sa) or S. epidermidis (Se) (n = 18 per strain per mesh). The first five meshes are polymer materials while Perm, SIS and Tuto are biomeshes. After 24/48 h of incubation, bacterial adhesion was examined by sonication, scanning electron microscopy (SEM) and light microscopy.

Results

Sa and Se showed a high affinity for the absorbable meshes (TIGR, BioA, Perm, SIS, Tuto) (p < 0.001). Precl yielded the lowest bacterial loads (p < 0.001). Surg, Precl and BioA underwent no substantial change over time, while Op (p < 0.001) and TIGR (p < 0.05) showed decreasing bacterial loads during incubation. The Sa-contaminated biomeshes behaved similarly while biomeshes inoculated with Se returned higher bacterial yields at 48 h, especially SIS (p < 0.001). SEM and light microscopy observations revealed planktonic bacteria and biofilms on the polymer surface and bacterial niches in biomesh pores.

Conclusions

Within 48 h of contamination, the absorbable polymer and biological meshes exhibited high bacterial loads. Given their lower affinity for both bacterial strains, the conventional non-absorbable polymer materials could be better candidates for use in contaminated surgical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klinge U (2009) Mesh for hernia repair. Br J Surg 95(5):539–540

    Article  Google Scholar 

  2. Cobb WS, Carbonell AM, Kalbaugh CL, Jones Y, Lokey JS (2009) Infection risk of open placement of intraperitoneal composite mesh. Am Surg 75(9):762–768

    PubMed  Google Scholar 

  3. Deysine M (2010) Infection control in a hernia clinic: 24 year results of aseptic and antiseptic measure implementation in 4620 “clean cases” based on up-to-date microbiological research. In: Schumpelick V, Fitzgibbons RJ (eds) Hernia Repair Sequelae, 1st edn. Springer, Berlin Heidelberg, pp 135–141

    Chapter  Google Scholar 

  4. Robinson TN, Clarke JH, Schoen J, Walsh MD (2005) Major mesh-related complications following hernia repair. Surg Endosc 19(2):1556–1560

    Article  CAS  PubMed  Google Scholar 

  5. Engelsman AF, Van der Mei HC, Busscher HJ, Ploeg RJ (2008) Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 95(8):1051–1059

    Article  CAS  PubMed  Google Scholar 

  6. Yoda I, Koseki H, Tomita M, Shida T, Horiuchi H, Sakada H, Osaki M (2014) Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol 14:234

    Article  PubMed Central  PubMed  Google Scholar 

  7. Braem A, Van Mellaert L, Mattheys T, Hofmans D, De Waelheyns E, Geris L, Anné J, Schrooten J, Vleugels J (2014) Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A 102(1):215–224

    Article  PubMed  Google Scholar 

  8. Kinnari TJ, Esteban J, Martín-de-Hijas NZ, Sánchez-Muñoz O, Sánchez-Salcedo S, Colilla M, Vallet-Regí M, Gómez-Barrena E (2009) Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calciumphosphate bioceramics. J Med Microbiol 58(Pt.1):132–137

    Article  CAS  PubMed  Google Scholar 

  9. Sánchez VM, Abi-Haldar Y, Itani KMF (2011) Mesh infection in ventral incisional hernia repair: incidence, contributing factors, and treatment. Surg Infect 12(3):205–210

    Article  Google Scholar 

  10. Breuing K, Butler CE, Ferzoco S, Franz M, Hultman CS, Kilbridge JF, Rosen M, Silverman RP, Vargo D (2010) Incisional ventral hernia review of the literature and recommendations regarding the grading and technique or repair. Surgery 148(3):544–558

    Article  PubMed  Google Scholar 

  11. Lin HJ, Spoerke N, Deveney C, Martindole R (2009) Reconstruction of complex abdominal wall hernias using acellular human dermal matrix. A single institution experience. Am J Surg 197(5):599–603

    Article  PubMed  Google Scholar 

  12. Primus F, Harris HW (2013) A critical review of biologic mesh use in ventral hernia repair under contaminated conditions. Hernia 17(1):21–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Carbonell AM, Criss CN, Cobb WS, Novitsky YW, Rosen MJ (2013) Outcomes of synthetic mesh in contaminated ventral hernia repairs. J Am Coll Surg 217(6):991–998

    Article  PubMed  Google Scholar 

  14. Yang F (2013) Use of polypropylene mesh in the management of a contaminated large ventral hernia: a contraindication or a solution? Am Surg 79(12):1298–1303

    PubMed  Google Scholar 

  15. García-Pumarino R, Pascual G, Rodríguez M, Pérez-Köhler B, Bellón JM (2014) Do collagen meshes offer any benefits over Preclude® ePTFE implants in contaminated surgical fields? A comparative in vitro and in vivo study. J Biomed Mat Res B Appl Biomater 102(2):366–375

    Article  Google Scholar 

  16. Armañanzas L, Ruiz-Tovar J, Arroyo A, García-Peche P, Armañanzas E, Diez M, Galindo I, Calpena R (2014) Prophylactic mesh vs suture in the closure of the umbilical trocar site after laparoscopic cholecystectomy in high-risk patients for incisional hernia. A randomized clinical trial. J Am Coll Surg 218(5):960–968

    Article  PubMed  Google Scholar 

  17. Sanders DL, Lambie J, Bond P, Moate R, Steer JA (2013) An in vitro study assessing the effect of mesh morphology and suture fixation on bacterial adherence. Hernia 17(6):779–789

    Article  CAS  PubMed  Google Scholar 

  18. Pérez-Tanoira R, Isea-Peña MC, Celdrán A, García-Vasquez C, Esteban J (2014) Bacterial adherence to different meshes used in abdominal surgery. Surg Infect 15(2):90–93

    Article  Google Scholar 

  19. Bellón JM, García-Carranza A, García-Honduvilla N, Carrera-San Martín A, Buján J (2004) Tissue integration and biomechanical behavior of contaminated experimental polypropylene and expanded polytetrafluoroethylene implants. Br J Surg 91(4):489–494

    Article  PubMed  Google Scholar 

  20. Halaweish I, Harth K, Broome AM, Voskerician G, Jacobs MR, Rosen MJ (2010) Novel in vitro model for assessing susceptibility of synthetic hernia repair meshes to Staphylococcus aureus infection using green fluorescent protein-labeled bacteria and modern imaging techniques. Surg Infect 11(5):449–454

    Article  Google Scholar 

  21. Bellón JM, García-Honduvilla N, Jurado F, Carranza A, Buján J (2001) In vitro interaction of bacteria with polypropylene/ePTFE prostheses. Biomaterials 22(14):2021–2024

    Article  PubMed  Google Scholar 

  22. Demirer S, Geçim IE, Aydinuraz K, Ataoğlu H, Yerdel MA, Kuterdem E (2001) Affinity of Staphylococcus epidermidis to various prosthetic graft materials. J Surg Res 99(1):70–74

    Article  CAS  PubMed  Google Scholar 

  23. Sanders DL, Kingsnorth AN, Lambie J, Bond P, Moate R, Steer JA (2013) An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh. Surg Endosc 27(3):978–985

    Article  PubMed  Google Scholar 

  24. Nyame TT, Lemon KP, Kolter T, Liao EC (2011) High throughput assay for bacterial adhesion on acellular dermal matrices and synthetic surgical materials. Plast Reconstr Surg 128(5):1061–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Catena F, Ansaloni L, Gazzotti F, Gagliardi S, Di Saverio S, D’Alessandro L, Pinna AD (2007) Use of porcine dermal collagen graft (Permacol) for hernia repair in contaminated fields. Hernia 11(1):57–60

    Article  CAS  PubMed  Google Scholar 

  26. Harth KC, Broome AM, Jacobs MR, Blatnik JA, Zeinali F, Bajaksouzian S, Rosen MJ (2011) Bacterial clearance of biologic grafts used in hernia repair: an experimental study. Surg Endosc 25(7):2224–2229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Shah BC, Tiwari MM, Goede MR, Eichler MJ, Hollins RR, McBride CL, Thompson JS, Oleynikov D (2011) Not all biologics are equal! Hernia 15(2):165–171

    Article  CAS  PubMed  Google Scholar 

  28. Primus FE, Harris HW (2013) A critical review of biologic mesh use in ventral hernia repairs under contaminated conditions. Hernia 17(1):21–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rosen MJ, Denoto G, Itani KM, Butler C, Vargo D, Smiell J, Rutan R (2013) Evaluation of surgical outcomes of retro-rectus versus intraperitoneal reinforcement with bio-prosthetic mesh in the repair of contaminated ventral hernias. Hernia 17(1):31–35

    Article  CAS  PubMed  Google Scholar 

  30. Cole WC, Balent EM, Masella PC, Kajiura LN, Matsumoto KW, Pierce LM (2015) An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes. Hernia 19(2):197–205. doi:10.1007/s10029-014-1290-0

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

B. Pérez-Köhler declares no conflict of interest. S. Sotomayor declares no conflict of interest. M. Rodríguez declares no conflict of interest. M. I. Gegúndez declares no conflict of interest. G. Pascual declares no conflict of interest. J. M. Bellón declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bellón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Köhler, B., Sotomayor, S., Rodríguez, M. et al. Bacterial adhesion to biological versus polymer prosthetic materials used in abdominal wall defect repair: do these meshes show any differences in vitro?. Hernia 19, 965–973 (2015). https://doi.org/10.1007/s10029-015-1378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-015-1378-1

Keywords

Navigation