Skip to main content
Log in

Discrete Weierstrass-Type Representations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Discrete Weierstrass-type representations yield a construction method in discrete differential geometry for certain classes of discrete surfaces. We show that the known discrete Weierstrass-type representations of certain surface classes can be viewed as applications of the \(\varOmega \)-dual transform to lightlike Gauss maps in Laguerre geometry. From this construction, further Weierstrass-type representations arise. As an application of the techniques we develop, we show that all discrete linear Weingarten surfaces of Bryant or Bianchi type locally arise via Weierstrass-type representations from discrete holomorphic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In this paper, the term “Weierstrass-type representation” refers to representations that are built from discrete holomorphic functions. However, this term can also refer to other representations, such as in [24] where a discrete analogue of the Kenmotsu representation is developed for discrete nonzero cmc surfaces in \({\mathbb {R}}^3\) using discrete harmonic maps.

  2. For \(B\in O(3,1)\), the same Möbius transformation is induced by \(\pm B\), precisely one of which preserves time orientation.

  3. Note that complex Möbius transformations are even in the sense that each complex Möbius transformation is the product of an even number of reflections in a circle. Therefore, complex Möbius transformations in the light cone model correspond to \(\text {SO}(3,1)\) transformations and induce isometries on \({\mathbb {H}}^3\).

  4. Choosing \(\infty \) may sound surprising, but in terms of a complex Möbius transformation, \(\infty \mapsto a/c\).

  5. This terminology is solely motivated by the smooth result in [21]. Developement of a discrete curvature theory for discrete spacelike surfaces in the lightcone could be the subject of future research.

  6. Note that many publications, such as [10], use the cross ratio factorizing function \(a_{ij}={1}/{m_{ij}}\).

  7. One can think of T(t) as a trivialisation of \(\varGamma \) in the sense that \(T(t)_i\varGamma (t)_{ij}T(t)_j^{-1} = \text {id}_{ij}\), where \(\text {id}_{ij}\) denotes the trivial map \(\{j\}\times {\mathbb {R}}^{3,1} \rightarrow \{i\}\times {\mathbb {R}}^{3,1}\).

References

  1. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, vol. 3: Differentialgeometrie der Kreise und Kugeln. Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin (1929)

  2. Bobenko, A.I., Hertrich-Jeromin, U., Lukyanenko, I.: Discrete constant mean curvature nets in space forms: Steiner’s formula and Christoffel duality. Discrete Comput. Geom. 52(4), 612–629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164(1), 231–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Bobenko, A.I., Pottmann, H., Wallner, J.: A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348(1), 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I., Suris, Yu.B.: Isothermic surfaces in sphere geometries as Moutard nets. Proc. R. Soc. Lond. Ser. A 463(2088), 3171–3193 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry. Integrable Structure. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence (2008)

  8. Bryant, R.L.: Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155, 321–347 (1988)

    MathSciNet  Google Scholar 

  9. Burstall, F.E., Cho, J., Hertrich-Jeromin, U., Pember, M., Rossman, W.: Discrete \(\Omega \)-nets and Guichard nets. Accepted for publication in Proceedings of the London Mathematical Society (2020)

  10. Burstall, F., Hertrich-Jeromin, U., Rossman, W.: Discrete linear Weingarten surfaces. Nagoya Math. J. 231, 55–88 (2018)

  11. Burstall, F., Hertrich-Jeromin, U., Rossman, W., Santos, S.: Discrete surfaces of constant mean curvature. RIMS Kôkûroku 1880, 133–179 (2014)

    MATH  Google Scholar 

  12. Cecil, Th.E.: Lie Sphere Geometry. Universitext. Springer, New York (2008)

    MATH  Google Scholar 

  13. Demoulin, A.: Sur les surfaces \(\Omega \). C. R. Acad. Sci. 153, 927–929 (1911)

    MATH  Google Scholar 

  14. Demoulin, A.: Sur les surfaces \(R\) et les surfaces \(\Omega \). C. R. Acad. Sci. 153, 590–593 (1911)

    MATH  Google Scholar 

  15. Demoulin, A.: Sur les surfaces \(R\) et sur les surfaces \(\Omega \). C. R. Acad. Sci. 153, 705–707 (1911)

    MATH  Google Scholar 

  16. Dubois, J., Hertrich-Jeromin, U., Szewieczek, G.: Notes on flat fronts in hyperbolic space. J. Geom. 113(1), # 20 (2022)

  17. Hertrich-Jeromin, U.: Transformations of discrete isothermic nets and discrete cmc-1 surfaces in hyperbolic space. Manuscripta Math. 102(4), 465–486 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hertrich-Jeromin, U., Szewieczek, G.: Discrete cyclic systems and circle congruences. Ann. Matematica Pura Appl. (1923-) (2022). https://link.springer.com/article/10.1007/s10231-022-01219-5

  19. Hoffmann, T., Rossman, W., Sasaki, T., Yoshida, M.: Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space. Trans. Am. Math. Soc. 364(11), 5605–5644 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Honda, A., Izumiya, Sh.: The lightlike geometry of marginally trapped surfaces in Minkowski space-time. J. Geom. 106(1), 185–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Izumiya, Sh.: Legendrian dualities and spacelike hypersurfaces in the lightcone. Mosc. Math. J. 9(2), 325–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam, W.Y.: CMC-1 surfaces via osculating Möbius transformations between circle patterns (2020). arXiv:2007.04253

  23. Liu, H.L.: Surfaces in the lightlike cone. J. Math. Anal. Appl. 325(2), 1171–1181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Müller, Ch.: On discrete constant mean curvature surfaces. Discrete Comput. Geom. 51(3), 516–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pember, M.: Weierstrass-type representations. Geom. Dedicata 204, 299–309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pottmann, H., Liu, Y.: Discrete surfaces in isotropic geometry. In: Mathematics of Surfaces XII (Sheffield 2007). Lecture Notes in Computer Science, vol. 4647, pp. 341–363. Springer, Berlin (2007)

  27. Rossman, W., Yasumoto, M.: Discrete linear Weingarten surfaces with singularities in Riemannian and Lorentzian spaceforms. In: Singularities in Generic Geometry (Kobe-Kyoto 2015). Advanced Studies in Pure Mathematics, vol. 78, pp. 383–410. Mathematical Society Japan, Tokyo (2018)

  28. Sachs, H.: Isotrope Geometrie des Raumes. Friedr. Vieweg & Sohn, Braunschweig (1990)

    Book  MATH  Google Scholar 

  29. Strubecker, K.: Differentialgeometrie des isotropen Raumes. III. Flächentheorie. Math. Z. 48, 369–427 (1942)

    Article  MATH  Google Scholar 

  30. Umehara, M., Yamada, K.: A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in \({\textbf{R} }^3\) into the hyperbolic \(3\)-space. J. Reine Angew. Math. 432, 93–116 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Umehara, M., Yamada, K.: A duality on CMC-1 surfaces in hyperbolic space, and a hyperbolic analogue of the Osserman inequality. Tsukuba J. Math. 21(1), 229–237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weierstrass, K.T.: Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist. In: Monatsberichte der Königlich Preussischen Akademie der Wissenschaften 1866, pp. 612–625. Königlich Preussischen Akademie der Wissenschaften, Berlin (1867)

  33. Yasumoto, M.: Discrete maximal surfaces with singularities in Minkowski space. Differ. Geom. Appl. 43, 130–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Joseph Cho for fruitful discussions during an impromptu stay in Kobe that sparked many ideas in this paper. We also express our gratitude to Udo Hertrich-Jeromin for his input which added significant results. Furthermore, we gratefully acknowledge financial support from the FWF research project P28427-N35 “Non-rigidity and symmetry breaking” and the JSPS/FWF Joint Project I3809-N32 “Geometric shape generation”. The first author was also supported by the GNSAGA of INdAM and the MIUR grant “Dipartimenti di Eccellenza” 2018–2022, CUP: E11G18000350001, DISMA, Politecnico di Torino and gratefully acknowledges support from the JSPS Grant-in-Aid for JSPS fellows 19J10679. The third author was partly supported by JSPS KAKENHI Grant Numbers JP18H04489, JP19J02034, JP20K14314, JP20H01801, JP20K03585, JST CREST Grant Number JPMJCR1911, and Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). Finally, the authors would like to thank the anonymous referees for their careful reading and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Polly.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pember, M., Polly, D. & Yasumoto, M. Discrete Weierstrass-Type Representations. Discrete Comput Geom 70, 816–844 (2023). https://doi.org/10.1007/s00454-022-00439-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00439-z

Keywords

Mathematics Subject Classification

Navigation