Skip to main content
Log in

Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The Vapnik–Chervonenkis dimension (in short, VC-dimension) of a graph is defined as the VC-dimension of the set system induced by the neighborhoods of its vertices. We show that every n-vertex graph with bounded VC-dimension contains a clique or an independent set of size at least \(e^{(\log n)^{1 - o(1)}}\). The dependence on the VC-dimension is hidden in the o(1) term. This improves the general lower bound, \(e^{c\sqrt{\log n}}\), due to Erdős and Hajnal, which is valid in the class of graphs satisfying any fixed nontrivial hereditary property. Our result is almost optimal and nearly matches the celebrated Erdős–Hajnal conjecture, according to which one can always find a clique or an independent set of size at least \(e^{\Omega (\log n)}\). Our results partially explain why most geometric intersection graphs arising in discrete and computational geometry have exceptionally favorable Ramsey-type properties. Our main tool is a partitioning result found by Lovász–Szegedy and Alon–Fischer–Newman, which is called the “ultra-strong regularity lemma” for graphs with bounded VC-dimension. We extend this lemma to k-uniform hypergraphs, and prove that the number of parts in the partition can be taken to be \((1/\varepsilon )^{O(d)}\), improving the original bound of \((1/\varepsilon )^{O(d^2)}\) in the graph setting. We show that this bound is tight up to an absolute constant factor in the exponent. Moreover, we give an \(O(n^k)\)-time algorithm for finding a partition meeting the requirements. Finally, we establish tight bounds on Ramsey–Turán numbers for graphs with bounded VC-dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A binary semi-algebraic relation E on a point set \(P\subset {{\mathbb {R}}}^d\) is the set of pairs of points (uv) from P whose 2d coordinates satisfy a boolean combination of a fixed number of polynomial inequalities.

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory Ser. A 29(3), 354–360 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Fischer, E., Newman, I.: Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM J. Comput. 37(3), 959–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Pach, J., Pinchasi, R., Radoičić, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J. Comb. Theory Ser. A 111(2), 310–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Pach, J., Solymosi, J.: Ramsey-type theorems with forbidden subgraphs. Combinatorica 21(2), 155–170 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  6. Anthony, M., Brightwell, G., Cooper, C.: The Vapnik–Chervonenkis dimension of a random graph. Discrete Math. 138(1–3), 43–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bohman, T., Keevash, P.: The early evolution of the \(H\)-free process. Invent. Math. 181(2), 291–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B., Erdős, P.: On a Ramsey–Turán type problem. J. Comb. Theory Ser. B 21(2), 166–168 (1976)

    Article  MATH  Google Scholar 

  9. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  10. Conlon, D., Fox, J.: Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22(5), 1191–1256 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conlon, D., Fox, J., Pach, J., Sudakov, B., Suk, A.: Ramsey-type results for semi-algebraic relations. Trans. Am. Math. Soc. 366(9), 5043–5065 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conlon, D., Fox, J., Sudakov, B.: Hypergraph Ramsey numbers. J. Am. Math. Soc. 23(1), 247–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Entringer, R.C., Erdős, P., Harner, C.C.: Some extremal properties concerning transitivity in graphs. Period. Math. Hung. 3(3–4), 275–279 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, P.: Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53(4), 292–294 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdős, P., Hajnal, A.: Ramsey-type theorems. Discrete Appl. Math. 25(1–2), 37–52 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Hajnal, A., Rado, R.: Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hung. 16, 93–196 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdős, P., Hajnal, A., Sós, V.T., Szemerédi, E.: More results on Ramsey–Turán type problem. Combinatorica 3(1), 69–82 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Hajnal, A., Rado, R., Sós, V.T (eds.) Infinite and Finite Sets, Vol. II, pp. 609–627. Colloquia Mathematica Societatis János Bolyai, vol. 10. North-Holland, Amsterdam (1975)

  19. Erdős, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. Lond. Math. Soc. 3, 417–439 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdős, P., Sós, V.T.: Some remarks on Ramsey’s and Turán’s theorem. In: Erdős, P., Rényi, A., Sós, V.T. (eds.) Combinatorial Theory and Its Applications, Vol. II. Colloquia Mathematica Societatis János Bolyai, vol. 4, pp. 395–404. North-Holland, Amsterdam (1970)

  21. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    MathSciNet  MATH  Google Scholar 

  22. Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J. Reine Angew. Math. 671, 49–83 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Fox, J., Pach, J., Suk, A.: Semi-algebraic colorings of complete graphs (2015). arXiv:1505.07429

  24. Fox, J., Pach, J., Suk, A.: A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing. SIAM J. Comput. 45(6), 2199–2223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fox, J., Sudakov, B.: Density theorems for bipartite graphs and related Ramsey-type results. Combinatorica 29(2), 153–196 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.): Handbook of Discrete and Computational Geometry. Discrete Mathematics and its Applications (Boca Raton). Chapman Hill/CRC Press, Boca Raton (2017)

  27. Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol. 173. American Mathematical Society, Providence (2011)

  28. Haussler, D.: Sphere packing numbers for subsets of the Boolean \(n\)-cube with bounded Vapnik–Chervonenkis dimension. J. Comb. Theory Ser. A 69(2), 217–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discrete Comput. Geom. 2(2), 127–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Keevash, P.: Hypergraph Turán problems. In: Chapman, R. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 392, pp. 83–139. Cambridge University Press, Cambridge (2011)

  31. Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for \(\varepsilon \)-nets. Discrete Comput. Geom. 7(2), 163–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., Woeginger, G.: The VC-dimension of set systems defined by graphs. Discrete Appl. Math. 77(3), 237–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Larman, D., Matoušek, J., Pach, J., Törőcsik, J.: A Ramsey-type result for convex sets. Bull. Lond. Math. Soc. 26(2), 132–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lovász, L., Szegedy, B.: Regularity partitions and the topology of graphons. In: Bárány, I., Solymosi, J. (eds.) An Irregular Mind. Bolyai Society Mathematical Studies, vol. 21, pp. 415–446. János Bolyai Mathematical Society, Budapest (2010)

  35. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212., Springer, New York (2002)

  36. Pach, J., Solymosi, J.: Structure theorems for systems of segments. In: Akiyama, J., Kano, M., Urabe, M. (eds.) Discrete and Computational Geometry. Lecture Notes in Computer Science, vol. 2098, pp. 308–317. Springer, Berlin (2001)

  37. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schaefer, M.: Deciding the Vapnik–Červonenkis dimension is \(\Sigma _p^3\)-complete. J. Comput. Syst. Sci. 58, 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  40. Shelah, S.: A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41, 247–261 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  41. Simonovits, M., Sós, V.T.: Ramsey–Turán theory. Discrete Math. 229(1–3), 293–340 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sós, V.T.: On extremal problems in graph theory. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and their Applications, pp. 407–410. Gordon and Beach, New York (1969)

    Google Scholar 

  43. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math. 20(1), 69–76 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  44. Spencer, J.: Random regular tournaments. Period. Math. Hung. 5, 105–120 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stanley, R.P.: Combinatorics and Commutative Algebra. 2nd edn. Progress in Mathematics, vol. 41. Birkhäuser, Boston (1996)

  46. Szemerédi, E.: On graphs containing no complete subgraphs with 4 vertices. Mat. Lapok 23, 111–116 (1972). (in Hungarian)

    MathSciNet  Google Scholar 

  47. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. Discrete Mathematics and its Applications (Boca Raton). Chapman and Hall/CRC Press, Boca Raton (2013)

  48. Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  49. Varnavides, P.: On certain sets of positive density. J. Lond. Math. Soc. 34, 358–360 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Sauermann for pointing out a small error in an earlier version of the proof of Lemma 2.3.

Funding

Funding were provided by NSF Division of Mathematical Sciences (Grant Nos. 1800746, 1352121, 1651782), Alfred P. Sloan Foundation, a Packard fellowship, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant Nos. 200020-144531, 200021-162884, 200021-137574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Suk.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, J., Pach, J. & Suk, A. Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension. Discrete Comput Geom 61, 809–829 (2019). https://doi.org/10.1007/s00454-018-0046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0046-5

Keywords

Mathematics Subject Classification

Navigation