Skip to main content
Log in

Bounds for graph regularity and removal lemmas

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck 2/log* k pairs of parts which are not \({\epsilon}\)-regular, where \({c,\epsilon >0 }\) are absolute constants. This bound is tight up to the constant c and addresses a question of Gowers on the number of irregular pairs in Szemerédi’s regularity lemma. In order to gain some control over irregular pairs, another regularity lemma, known as the strong regularity lemma, was developed by Alon, Fischer, Krivelevich, and Szegedy. For this lemma, we prove a lower bound of wowzer-type, which is one level higher in the Ackermann hierarchy than the tower function, on the number of parts in the strong regularity lemma, essentially matching the upper bound. On the other hand, for the induced graph removal lemma, the standard application of the strong regularity lemma, we find a different proof which yields a tower-type bound. We also discuss bounds on several related regularity lemmas, including the weak regularity lemma of Frieze and Kannan and the recently established regular approximation theorem. In particular, we show that a weak partition with approximation parameter \({\epsilon}\) may require as many as \({2^{\Omega}(\epsilon^{-2})}\) parts. This is tight up to the implied constant and solves a problem studied by Lovász and Szegedy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajtai M., Szemerédi E.: Sets of lattice points that form no squares. Studia Scientiarum Mathematicarum Hungarica. 9, 9–11 (1974)

    MathSciNet  Google Scholar 

  2. Alon N.: Testing subgraphs in large graphs. Random Structures & Algorithms. 21, 359–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon N., Duke R.A., Lefmann H., Rödl V., Yuster R.: The algorithmic aspects of the regularity lemma. Journal of Algorithms. 16, 80–109 (1994)

    Article  MATH  Google Scholar 

  4. Alon N., Fernandez de la Vega W., Kannan R., Karpinski M.: Random sampling and approximation of MAX-CSPs. Journal of Computer and System Sciences. 67, 212–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon N., Fischer E., Krivelevich M., Szegedy M.: Efficient testing of large graphs. Combinatorica. 20, 451–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon N., Fischer E., Newman I.: Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM Journal of Computing 37, 959–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alon N., Shapira A: Testing subgraphs in directed graphs. Journal of Computing System Sciences. 69, 354–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alon N., Shapira A.: A characterization of easily testable induced subgraphs. Combinatorics, Probability and Computing, 15, 791–805 (2006)

    Article  MathSciNet  Google Scholar 

  9. N. Alon, A. Shapira and U. Stav. Can a graph have distinct regular partitions? SIAM Journal of Discrete Mathematics, 23 (2008/2009), 278–287.

    Google Scholar 

  10. Alon N., Spencer J.H.: The Probabilistic Method 3rd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  11. M. Axenovich and R. Martin. A version of Szemerédi’s regularity lemma for multicolored graphs and directed graphs that is suitable for induced graphs. arXiv:1106.2871.

  12. N. Bansal and R. Williams. Regularity lemmas and combinatorial algorithms. In: Proceedings of the 50th IEEE FOCS (2009), pp. 745–754.

  13. B. Bollobás. The work of William Timothy Gowers. In: Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Documenta Mathematica, Extra Vol. I (1998), pp. 109–118 (electronic).

  14. Chung F.R.K., Graham R.L., Wilson R.M.: Quasi-random graphs. Combinatorica. 9, 345–362 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duke R.A., Lefmann H., Rödl V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM Journal of Computing. 24, 598–620 (1995)

    Article  MATH  Google Scholar 

  16. Eaton N.: Ramsey numbers for sparse graphs. Discrete Mathematics. 185, 63–75 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erdös P., Frankl P., Rödl V.: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs and Combinatorics. 2, 113–121 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fox J.: A new proof of the graph removal lemma. Annals of Mathematics. 174, 561–579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense problems. In: Proceedings of the 37th IEEE FOCS (1996), pp. 12–20.

  20. Frieze A., Kannan R.: Quick approximation to matrices and applications. Combinatorica. 19, 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldreich O., Goldwasser S., Ron D.: Property testing and its applications to learning and approximation. Journal of ACM. 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gowers W.T.: Lower bounds of tower type for Szemerédi’s uniformity lemma. Geometric and Functional Analysis. 7, 322–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.L. Graham, B.L. Rothschild and J.H. Spencer. Ramsey Theory, 2nd edn. Wiley (1980)

  24. Haxell P.E.: Partitioning complete bipartite graphs by monochromatic cycles. Journal of Combinatorial Theory Series B. 69, 210–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoeffding W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association. 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Kohayakawa and V. Rödl. Szemerédi’s regularity lemma and quasi-randomness. In: Recent Advances in Algorithms and Combinatorics. CMS Books Mathematics/Ouvrages Mathematics SMC, Vol. 11, Springer, New York (2003), pp. 289–351.

  27. J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph theory. In: Combinatorics, Paul Erdös is Eighty, Vol. 2 (Keszthely, 1993). Bolyai Society Mathematical Studies, Vol. 2. János Bolyai Mathematical Society, Budapest (1996), pp. 295–352.

  28. M. Krivelevich and B. Sudakov. Pseudo-random graphs. In: More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, Vol. 15. Springer, Berlin (2006), pp. 199–262.

  29. Lovász L., Szegedy B.: Szemerédi’s lemma for the analyst. Geometric and Functional Analysis. 17, 252–270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Malliaris and S. Shelah. Regularity Lemmas for Stable Graphs. arXiv:1102.3904.

  31. Y. Peng, V. Rödl and A. Ruciński. Holes in graphs. Electronic Journal of Combinatorics, 9 (2002), Research Paper 1 (electronic).

  32. Rödl V., Schacht M.: Regular partitions of hypergraphs: regularity lemmas. Combinatorics, Probability and Computing. 16, 833–885 (2007)

    MathSciNet  MATH  Google Scholar 

  33. V. Rödl and M. Schacht. Regularity lemmas for graphs. In: Fete of Combinatorics and Computer Science. Bolyai Society Mathematical Studies, Vol. 20 (2010), pp. 287–325.

  34. Roth K.F.: On certain sets of integers. Journal of London Mathematical Society. 28, 104–109 (1953)

    Article  MATH  Google Scholar 

  35. Rubinfield R., Sudan M.: Robust characterization of polynomials with applications to program testing. SIAM Journal of Computing. 25, 252–271 (1996)

    Article  Google Scholar 

  36. I.Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. In: Combinatorics (Keszthely, 1976), College Mathematical Society Journal Bolyai, Vol. 18, Vol. II (1976), pp. 939–945.

  37. J. Solymosi. Note on a generalization of Roth’s theorem. In: J. Pach (ed.) Discrete and Computational Geometry, Algorithms Combinatorics, Vol. 25. Springer, Berlin (2003), pp. 825–827.

  38. Szemerédi E.: On graphs containing no complete subgraph with 4 vertices. Matematikai Lapok. 23, 113–116 (1972)

    MathSciNet  Google Scholar 

  39. Szemerédi E.: Integer sets containing no k elements in arithmetic progression. Acta Arithmetica. 27, 299–345 (1975)

    Google Scholar 

  40. E. Szemerédi. Regular partitions of graphs. In: Colloques Internationaux CNRS 260—Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), pp. 399–401.

  41. Tao T.: Szemerédi’s regularity lemma revisited. Contributions to Discrete Mathematics. 1, 8–28 (2006)

    MathSciNet  MATH  Google Scholar 

  42. A.G. Thomason. Pseudorandom graphs. In: Random Graphs ’85 (Poznań, 1985), North-Holland Mathematical Studies, Vol. 144. North-Holland, Amsterdam (1987), pp. 307–331.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Fox.

Additional information

David Conlon’s research was supported by a Royal Society University Research Fellowship and Jacob Fox’s research was supported by a Simons Fellowship and NSF grant DMS-1069197.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conlon, D., Fox, J. Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22, 1191–1256 (2012). https://doi.org/10.1007/s00039-012-0171-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0171-x

Keywords

Navigation