Skip to main content
Log in

Characterizing Face and Flag Vector Pairs for Polytopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Grünbaum, Barnette, and Reay in 1974 completed the characterization of the pairs \((f_i,f_j)\) of face numbers of 4-dimensional polytopes. Here we obtain a complete characterization of the pairs of flag numbers \((f_0,f_{03})\) for 4-polytopes. Furthermore, we describe the pairs of face numbers \((f_0,f_{d-1})\) for d-polytopes; this description is complete for even \(d\ge 6\) except for finitely many exceptional pairs that are “small” in a well-defined sense, while for odd d we show that there are also “large” exceptional pairs. Our proofs rely on the insight that “small” pairs need to be defined and to be treated separately; in the 4-dimensional case, these may be characterized with the help of the characterizations of the 4-polytopes with at most eight vertices by Altshuler and Steinberg (1984).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altshuler, A., Shemer, I.: Construction theorems for polytopes. Isr. J. Math. 47(2–3), 99–110 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altshuler, A., Steinberg, L.: Enumeration of the quasisimplicial \(3\)-spheres and \(4\)-polytopes with eight vertices. Pac. J. Math. 113(2), 269–288 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altshuler, A., Steinberg, L.: The complete enumeration of the \(4\)-polytopes and \(3\)-spheres with eight vertices. Pac. J. Math. 117(1), 1–16 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnette, D.: The projection of the \(f\)-vectors of \(4\)-polytopes onto the \((E, S)\)-plane. Discrete Math. 10, 201–216 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnette, D., Reay, J.R.: Projections of \(f\)-vectors of four-polytopes. J. Comb. Theory Ser. A 15, 200–209 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayer, M.: The extended \(f\)-vectors of \(4\)-polytopes. J. Comb. Theory Ser. A 44(1), 141–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bayer, M.M., Billera, L.J.: Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets. Invent. Math. 79(1), 143–157 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billera, L.J., Björner, A.: Face numbers of polytopes and complexes. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, pp. 449–475. CRC Press LLC, Boca Raton (2017)

    Google Scholar 

  9. Billera, L.J., Lee, C.W.: Sufficiency of McMullen’s conditions for \(f\)-vectors of simplicial polytopes. Bull. Am. Math. Soc. 2(1), 181–185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Billera, L.J., Lee, C.W.: A proof of the sufficiency of McMullen’s conditions for \(f\)-vectors of simplicial polytopes. J. Comb. Theory Ser. A 31(3), 237–255 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eggleston, H.G., Grünbaum, B., Klee, V.: Some semicontinuity theorems for convex polytopes and cell-complexes. Comment. Math. Helv. 39, 165–188 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eppstein, D., Kuperberg, G., Ziegler, G.M.: Fat \(4\)-polytopes and fatter \(3\)-spheres. In: Bezdek, A. (ed.) Discrete Geometry. Pure and Applied Mathematics, vol. 253, pp. 239–265. Marcel Dekker, New York (2003)

    Chapter  Google Scholar 

  13. Firsching, M.: The complete enumeration of \(4\)-polytopes and \(3\)-spheres with nine vertices (2018). http://arxiv.org/abs/1803.05205

  14. Fukuda, K., Miyata, H., Moriyama, S.: Classification of oriented matroids. www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/. Accessed Sept 2018

  15. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003). Second edition prepared by V. Kaibel, V. Klee and G.M. Ziegler (original edition: Interscience, London 1967)

  16. Henk, M., Richter-Gebert, J., Ziegler, G.M.: Basic properties of convex polytopes. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, pp. 383–413. CRC Press LLC, Boca Raton (2017)

    Google Scholar 

  17. Höppner, A., Ziegler, G.M.: A census of flag-vectors of \(4\)-polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes-Combinatorics and Computation. DMV Seminars, vol. 29, pp. 105–110. Birkhäuser, Basel (2000)

    Chapter  MATH  Google Scholar 

  18. Kusunoki, T., Murai, S.: The numbers of edges of \(5\)-polytopes with a given number of vertices (2018). http://arxiv.org/abs/1702.06281v3 (to appear in Ann. Comb.)

  19. Lee, C.W., Menzel, M.M.: A generalized sewing construction for polytopes. Isr. J. Math. 176, 241–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Murai, S., Nevo, E.: The flag \(f\)-vectors of Gorenstein\(^*\) order complexes of dimension 3. Proc. Am. Math. Soc. 142(5), 1527–1538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nevo, E., Pineda-Villavicencio, G., Ugon, J., Yost, D.: Almost simplicial polytopes: the lower and upper bound theorems. Extended Abstract: Proc. 28th Int. Conf. Formal Power Series and Algebraic Combinatorics FPSAC (Vancouver BC), July 2016. DMTCS Proceedings, 2016, pp. 947–958. https://fpsac2016.sciencesconf.org/browse/author?authorid=414253

  23. Pineda-Villavicencio, G., Ugon, J., Yost, D.: The excess degree of a polytope. SIAM J. Discrete Math. 32(3), 2011–2046 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley, R.P.: The number of faces of simplicial convex polytopes. Adv. Math. 35(3), 236–238 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steinitz, E.: Über die eulerschen polyederrelationen. Arch. Math. Phys. 11, 86–88 (1906)

    MATH  Google Scholar 

  26. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). Revised edition, 1998; seventh updated printing 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter M. Ziegler.

Additional information

Editor in Charge: János Pach

In memory of Branko Grünbaum (1929–2018)

HS: Supported by DFG via the Berlin Mathematical School.

GMZ: Research supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”

Appendix

Appendix

Table 3 Polytopes \(P_i\) with 7 and 8 vertices

Table 3 lists all polytopes \(P_i\) with seven and eight vertices from Table 1 used in the construction of all possible pairs \((f_0,f_{03})\). The polytopes are given by their facet list. See Fukuda et al. [14] for a complete list of all 31 polytopes with seven vertices and all 1294 polytopes with eight vertices. Entry 7.x in the last column means that the polytope can be found as the xth polytope listed in the classification of 4-polytopes with seven vertices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sjöberg, H., Ziegler, G.M. Characterizing Face and Flag Vector Pairs for Polytopes. Discrete Comput Geom 64, 174–199 (2020). https://doi.org/10.1007/s00454-018-0044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0044-7

Keywords

Mathematics Subject Classification

Navigation