Skip to main content
Log in

A generalized sewing construction for polytopes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe a new technique for constructing convex polytopes—a generalization of Shemer’s sewing construction for simplicial neighborly polytopes that has been modified to allow the creation of nonsimplicial polytopes as well. We show that Bisztriczky’s ordinary polytopes can be constructed in this manner, and we also construct several infinite families of polytopes. We consider bounds on the flag f-vectors of 4-polytopes that can be inductively constructed by generalized sewing starting from the 4-simplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Altshuler and I. Shemer, Construction theorems for polytopes, Israel Journal of Mathematics 47 (1984), 99–110.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. M. Bayer, The extended f-vectors of 4-polytopes, Journal of Combinatorial Theory. Series A 44 (1987), 141–151.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. M. Bayer, Flag vectors of multiplicial polytopes, Electronic Journal of Combinatorics 11 (2004), Research Paper 65, 13 pp. (electronic).

  4. M. M. Bayer, Shelling and the h-vector of the (extra)ordinary polytope, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge University Press, Cambridge, 2005, pp. 97–120.

    Google Scholar 

  5. M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Inventiones Mathematicae 79 (1985), 143–157.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. M. Bayer, A. M. Bruening and J. D. Stewart, A combinatorial study of multiplexes and ordinary polytopes, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 27 (2002), 49–63, Geometric combinatorics (San Francisco, CA/Davis, CA, 2000).

    MathSciNet  Google Scholar 

  7. M. M. Bayer and A. Klapper, A new index for polytopes, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 6 (1991), 33–47.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. M. Bayer and C. W. Lee, Combinatorial aspects of convex polytopes, Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 485–534.

    Google Scholar 

  9. L. J. Billera and R. Ehrenborg, Monotonicity of the cd-index for polytopes, Mathematische Zeitschrift 233 (2000), 421–441.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. J. Billera and C. W. Lee, A proof of the sufficiency of McMullen’s conditions for f-vectors of simplicial convex polytopes, Journal of Combinatorial Theory. Series A 31 (1981), 237–255.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Bisztriczky, Ordinary 3-polytopes, Geometriae Dedicata 52 (1994), 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Bisztriczky, On a class of generalized simplices, Mathematika. A Journal of Pure and Applied Mathematics 43 (1996), 274–285 (1997).

    MATH  MathSciNet  Google Scholar 

  13. T. Bisztriczky, Ordinary (2m + 1)-polytopes, Israel Journal of Mathematics 102 (1997), 101–123.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. N. Dinh, Ordinary polytopes, Ph.D. thesis, The University of Calgary, 1999.

  15. W. Finbow-Singh, Low dimensional neighborly polytopes, Ph.D. thesis, The University of Calgary, 2003.

  16. K. Fukuda, Cdd—a C-implementation of the double description method, http://www.cs.mcgill.ca/~fukuda/soft/cdd home/cdd.html.

  17. D. Gale, Neighborly and cyclic polytopes, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 225–232.

    Google Scholar 

  18. B. Grünbaum, Convex polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003, Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.

    Google Scholar 

  19. A. Höppner and G. M. Ziegler, A census of flag-vectors of 4-polytopes, Polytopes—combinatorics and computation (Oberwolfach, 1997), Birkhäuser, Basel, 2000, pp. 105–110.

    Google Scholar 

  20. P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. M. Menzel, Generalized sewing constructions for polytopes, Ph.D. thesis, University of Kentucky, 2004.

  22. I. Shemer, Neighborly polytopes, Israel Journal of Mathematics 43 (1982), 291–314.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. P. Stanley, The number of faces of a simplicial convex polytope, Advances in Mathematics 35 (1980), 236–238.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Steinitz, Polyeder und Raumeinteilungen, Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometrie), Teil 3AB12, 1922, pp. 1–139.

  25. E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin, 1976, Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41.

    MATH  Google Scholar 

  26. G. M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl W. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.W., Menzel, M.M. A generalized sewing construction for polytopes. Isr. J. Math. 176, 241–267 (2010). https://doi.org/10.1007/s11856-010-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0028-7

Keywords

Navigation