Skip to main content
Log in

Comparison of Matrix Norm Sparsification

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A well-known approach in the design of efficient algorithms, called matrix sparsification, approximates a matrix A with a sparse matrix \(A'\). Achlioptas and McSherry (J ACM 54(2):9-es, 2007) initiated a long line of work on spectral-norm sparsification, which aims to guarantee that \(\Vert A'-A\Vert \le \epsilon \Vert A\Vert \) for error parameter \(\epsilon >0\). Various forms of matrix approximation motivate considering this problem with a guarantee according to the Schatten p-norm for general p, which includes the spectral norm as the special case \(p=\infty \). We investigate the relation between fixed but different \(p\ne q\), that is, whether sparsification in the Schatten p-norm implies (existentially and/or algorithmically) sparsification in the Schatten \(q\text {-norm}\) with similar sparsity. An affirmative answer could be tremendously useful, as it will identify which value of p to focus on. Our main finding is a surprising contrast between this question and the analogous case of \(\ell _p\)-norm sparsification for vectors: For vectors, the answer is affirmative for \(p<q\) and negative for \(p>q\), but for matrices we answer negatively for almost all sufficiently distinct \(p\ne q\). In addition, our explicit constructions may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We define it for the general case of rectangular matrices, but we focus on square matrices.

  2. For symmetric matrices AB, we denote \(A\preceq B\) if \(B-A\) is PSD.

  3. Hadamard matrices are not known for every n, but are known for powers of 2. Recall that we assumed n is a power of 2 in Sect. 1.4, thus there exists an \(n\times n\) Hadamard matrix.

References

  1. Arora, S., Hazan, E., Kale, S.: A fast random sampling algorithm for sparsifying matrices. In: Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques, pp. 272–279. Springer, New York (2006). https://doi.org/10.1007/11830924_26

    Chapter  Google Scholar 

  2. Achlioptas, D., Karnin, Z.S., Liberty, E.: Near-optimal entrywise sampling for data matrices. In: Advances in Neural Information Processing Systems, pp. 1565–1573 (2013). https://proceedings.neurips.cc/paper/2013/hash/6e0721b2c6977135b916ef286bcb49ec-Abstract.html

  3. Achlioptas, D., McSherry, F.: Fast computation of low-rank matrix approximations. J ACM (JACM) 54(2), 9-es (2007). https://doi.org/10.1145/1219092.1219097

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakshi, A, Clarkson, K.L., Woodruff, D.P.: Low-rank approximation with 1/\(\epsilon \)\({}^{\text{1/3}}\) matrix-vector products. In: 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1130–1143 (2022). https://doi.org/10.1145/3519935.3519988

  5. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer-Verlag, New York (1997). https://doi.org/10.1007/978-1-4612-0653-8

    Book  MATH  Google Scholar 

  6. Bhatia, R.: Pinching, trimming, truncating, and averaging of matrices. Am. Math. Mon. 107(7), 602–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braverman, V., Krauthgamer, R., Krishnan, A., Sapir, S.: Near-optimal entrywise sampling of numerically sparse matrices. In: Conference on Learning Theory, COLT, vol. 134, pp. 759–773. Proceedings of Machine Learning Research. PMLR (2021). http://proceedings.mlr.press/v134/braverman21b.html

  8. Bhatia, R., Kahan, W., Li, R.-C.: Pinchings and norms of scaled triangular matrices. Linear Multilinear Algebra 50(1), 15–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Batson, J., Spielman, D.A., Srivastava, N.: Twice-ramanujan sparsifiers. SIAM J Comput 41(6), 1704–1721 (2012). https://doi.org/10.1137/090772873

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, Emmanuel J., Recht, Benjamin: Exact matrix completion via convex optimization. Commun. ACM 55(6), 111–119 (2012). https://doi.org/10.1145/2184319.2184343

    Article  MATH  Google Scholar 

  11. Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Sparse and low-rank matrix decompositions. IFAC Proc Vol 42(10), 1493–1498 (2009). https://doi.org/10.3182/20090706-3-FR-2004.00249

    Article  Google Scholar 

  12. Candès, Emmanuel J., Tao, Terence: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010). https://doi.org/10.1109/TIT.2010.2044061

    Article  MathSciNet  MATH  Google Scholar 

  13. Drineas, P., Zouzias, A.: A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality. Inf. Process. Lett. 111(8), 385–389 (2011). https://doi.org/10.1016/j.ipl.2011.01.010

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta, N., Sidford, A.: Exploiting numerical sparsity for efficient learning: faster eigenvector computation and regression. Adv. Neural Inf. Process. Syst. 31, 5269–5278 (2018)

    Google Scholar 

  15. Gittens, A., Tropp, J.A.: Error bounds for random matrix approximation schemes (2009). arXiv:0911.4108

  16. Kundu, A., Drineas, P.: A note on randomized element-wise matrix sparsification (2014). arXiv:1404.0320

  17. Kundu, A., Drineas, P., Magdon-Ismail, M.: Recovering PCA and sparse PCA via hybrid-(\(l_1\), \(l_2\)) sparse sampling of data elements. J. Mach. Learn. Res. 18(75), 1–34 (2017)

    MATH  Google Scholar 

  18. Khetan, A., Oh, S.: Spectrum estimation from a few entries. J. Mach. Learn. Res. 20(21), 1–55 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Kong, W., Valiant, G.: Spectrum estimation from samples. Ann. Stat. 45(5), 2218–2247 (2017). https://doi.org/10.1214/16-AOS1525

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, Y.T., Sun, H.: Constructing linear-sized spectral sparsification in almost-linear time. SIAM J. Comput 47(6), 2315–2336 (2018). https://doi.org/10.1137/16M1061850

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y., Woodruff, D.P.: Input-sparsity low rank approximation in schatten norm. In: Proceedings of the 37th International Conference on Machine Learning, ICML, vol. 119, pp. 6001–6009. Proceedings of machine learning research (2020). http://proceedings.mlr.press/v119/li20q.html

  22. Nguyen, N.H., Drineas, P., Tran, T.D.: Tensor sparsification via a bound on the spectral norm of random tensors. Inf. Inference J. IMA 4(3), 195–229 (2015). https://doi.org/10.1093/imaiai/iav004

    Article  MathSciNet  MATH  Google Scholar 

  23. Nie, F., Huang, H., Ding, C.H.Q.: Low-rank matrix recovery via efficient schatten p-norm minimization. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012). http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5165

  24. Pudlák, P., Rödl, V.: Some combinatorial-algebraic problems from complexity theory. Discrete Math. 136(1–3), 253–279 (1994). https://doi.org/10.1016/0012-365X(94)00115-Y

    Article  MathSciNet  MATH  Google Scholar 

  25. Rotfel’d, S.Y.: Remarks on the singular numbers of a sum of completely continuous operators. Funct. Anal. Appl. 1(3), 95–96 (1967). https://doi.org/10.1007/BF01076915

    Article  MATH  Google Scholar 

  26. Spielman, D.A., Teng, S.-H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011). https://doi.org/10.1137/08074489X

    Article  MathSciNet  MATH  Google Scholar 

  27. Thompson, R.: Convex and concave functions of singular values of matrix sums. Pac. J. Math. 66(1), 285–290 (1976). https://doi.org/10.2140/pjm.1976.66.285

    Article  MathSciNet  MATH  Google Scholar 

  28. Valiant L.G.: Graph-theoretic arguments in low-level complexity. In: Mathematical Foundations of Computer Science, 6th Symposium, vol. 53, pp. 162–176. Lecture Notes in Computer Science. Springer (1977). https://doi.org/10.1007/3-540-08353-7_135

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all parts of the research, and the formal analysis was carried out mainly by SS.

Corresponding author

Correspondence to Shay Sapir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work partially supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18, the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center, and a Minerva Foundation grant.

Appendices

Appendix

A Proof of Lemma 1.6

In this section, we prove Lemma 1.6.

Lemma 1.6

For all PSD matrices \(A\in \mathbb {R}^{n\times n}\) and \(\epsilon >0\), every \(\epsilon \)-spectral approximation \(A'\) of A is also an \((\epsilon ,S_p)\)-norm approximation of A, simultaneously for all \(p\ge 1\).

Proof

Let \(A'\in \mathbb {R}^{n\times n}\) be an \(\epsilon \)-spectral approximation of A, i.e., \(-\epsilon A \preceq A'-A \preceq \epsilon A\). Observe that the matrix \(A'-A\) is symmetric. Let the eigendecomposition of \(A'-A\) be \(UDU^\top \), including zero eigenvalues so that \(U\in \mathbb {R}^{n\times n}\) is unitary. Denote the i-th column of U by \(u_i\) (which is a normalized eigenvector). Then

$$\begin{aligned} \Vert A'-A\Vert _{S_p}^p&= \sum _i \left| u_i^\top (A'-A)u_i \right| ^p \le \sum _i |u_i^\top (\epsilon A)u_i|^p = \epsilon ^p \sum _i \left( u_i^\top A u_i \right) ^p\\&= \epsilon ^p \left\| {\text {diag}}\left( U^\top A U \right) \right\| _{S_p}^p \le \epsilon ^p \Vert U^\top A U \Vert _{S_p}^p = \epsilon ^p \Vert A\Vert _{S_p}^p, \end{aligned}$$

where \({\text {diag}}(U^\top A U)\) is a diagonal matrix with the same diagonal as \(U^\top A U\) (and zeros otherwise), and the last inequality holds by Lemma 3.4 (pinching inequality [6]). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krauthgamer, R., Sapir, S. Comparison of Matrix Norm Sparsification. Algorithmica 85, 3957–3972 (2023). https://doi.org/10.1007/s00453-023-01172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01172-6

Keywords

Navigation