Skip to main content
Log in

Towards Constant-Factor Approximation for Chordal/Distance-Hereditary Vertex Deletion

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

For a family of graphs \(\mathcal {F}\), Weighted \(\mathcal {F}\)-Deletion is the problem for which the input is a vertex weighted graph \(G = (V, E)\) and the goal is to delete \(S \subseteq V\) with minimum weight such that \(G \setminus S \in \mathcal {F}\). Designing a constant-factor approximation algorithm for large subclasses of perfect graphs has been an interesting research direction. Block graphs, 3-leaf power graphs, and interval graphs are known to admit constant-factor approximation algorithms, but the question is open for chordal graphs and distance-hereditary graphs. In this paper, we add one more class to this list by presenting a constant-factor approximation algorithm when \(\mathcal {F}\) is the intersection of chordal graphs and distance-hereditary graphs. They are known as ptolemaic graphs and form a superset of both block graphs and 3-leaf power graphs above. Our proof presents new properties and algorithmic results on inter-clique digraphs as well as an approximation algorithm for a variant of Feedback Vertex Set that exploits this relationship (named Feedback Vertex Set with Precedence Constraints), each of which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Let \(C_{\geqslant k}\) be the set of cycles of length at least k.

  2. Any graph has either a vertex-disjoint packing of \(k+1\) cycles, or a feedback vertex set of size \(O(k\log k)\).

  3. The name ptolemaic comes from the fact that the shortest path distance satisfies Ptolemy’s inequality: For every four vertices uvwx, the inequality \(d(u,v)d(w,x)+d(u,x)d(v,w)\geqslant d(u,w)d(v,x)\) holds.

  4. [10] added an additional cycle covering constraint in the LP. We find it conceptually easier to deal with the last remaining cycle separately at the end.

References

  1. Agrawal, A., Kolay, S., Lokshtanov, D., Saket S.A.: Faster FPT algorithm and a smaller kernel for block graph vertex deletion, LATIN: Theoretical Informatics, Lecture Notes in Comput. Sci., vol. 9644. pp. 1–13. Springer, Berlin (2016)

  2. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Polylogarithmic approximation algorithms for weighted-\(\cal{F}\)-deletion problems, Approximation, randomization, and combinatorial optimization. Algorithms and techniques, LIPIcs. Leibniz Int. Proc. Inform., vol. 116, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. 1–15 (2018)

  3. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms 15(1), 28 (2019)

    Article  MathSciNet  Google Scholar 

  4. Agrawal, A., Misra, P., Saurabh, S., Zehavi, M.: Interval vertex deletion admits a polynomial kernel, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, pp. 1711–1730 (2019)

  5. Ahn, J., Eiben, E., Kwon, O., Oum, S.: A polynomial kernel for \(3\)-leaf power deletion. In 45th International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 170, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, pp. 5:1–5:14 (2020)

  6. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Inform. Process. Lett. 98(4), 133–138 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y.: Linear recognition of almost interval graphs, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, pp. 1096–1115 (2016)

  8. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), 35 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118–137 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chekuri, C., Madan, V.: Constant factor approximation for subset feedback set problems via a new LP relaxation. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, pp. 808–820 (2016)

  11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf power problems. Algorithmica 44(4), 363–381 (2006)

    Article  MathSciNet  Google Scholar 

  12. Eiben, E., Ganian, R., Kwon, O.: A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. J. Comput. Syst. Sci. 97, 121–146 (2018)

    Article  MathSciNet  Google Scholar 

  13. Farber, M.: On diameters and radii of bridged graphs. Discrete Math. 73(3), 249–260 (1989)

    Article  MathSciNet  Google Scholar 

  14. Fiorini, S., Joret, G., Pietropaoli, U.: Hitting diamonds and growing cacti, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 6080, pp. 191–204. Springer, Berlin (2010)

  15. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approximation, kernelization and optimal FPT algorithms. In IEEE 53rd Annual Symposium on Foundations of Computer Science–FOCS 2012, IEEE Computer Soc. Los Alamitos, CA 2012, pp. 470–479 (2012)

  16. Gupta, A., Lee, E., Li, J., Manurangsi, P., Wlodarczyk, M.: Losing treewidth by separating subsets, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, pp. 1731–1749 (2019)

  17. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci. 511, 172–180 (2013)

    Article  MathSciNet  Google Scholar 

  18. Howorka, E.: A characterization of Ptolemaic graphs. J. Graph Theory 5(3), 323–331 (1981)

    Article  MathSciNet  Google Scholar 

  19. Bart, M.P.: Jansen and Marcin Pilipczuk, Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math. 32(3), 2258–2301 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MathSciNet  Google Scholar 

  21. Kim, E.J., Kwon, O.: A polynomial kernel for distance-hereditary vertex deletion, Algorithms and data structures, Lecture Notes in Comput. Sci., vol. 10389, pp. 509–520. Springer, Cham (2017)

  22. Kim, E.J., Kwon, O.: Erdős-Pósa property of chordless cycles and its applications. J. Combin. Theory Ser. B 145, 65–112 (2020)

    Article  MathSciNet  Google Scholar 

  23. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms 12(2), 41 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms 10(4), 15 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Lokshtanov, D., Misra, P., Panolan, F., Philip, G., Saurabh, S.:A (\(2 + \epsilon \))-factor approximation algorithm for split vertex deletion, 47th International Colloquium on Automata, Languages, and Programming, LIPIcs. Leibniz Int. Proc. Inform., vol. 168, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, (2020)

  26. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  Google Scholar 

  27. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  Google Scholar 

  28. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  Google Scholar 

  29. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  Google Scholar 

  30. Uehara, R., Uno, Y.: Laminar structure of Ptolemaic graphs with applications. Discrete Appl. Math. 157(7), 1533–1543 (2009)

    Article  MathSciNet  Google Scholar 

  31. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jungho Ahn is supported by the Institute for Basic Science (IBS-R029-C1). Eun Jung Kim is supported by the Grant from French National Research Agency (ANR) under JCJC program (ASSK: ANR-18-CE40-0025-01). Euiwoong Lee is supported by Simons Collaboration on Algorithms and Geometry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, J., Kim, E.J. & Lee, E. Towards Constant-Factor Approximation for Chordal/Distance-Hereditary Vertex Deletion. Algorithmica 84, 2106–2133 (2022). https://doi.org/10.1007/s00453-022-00963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00963-7

Keywords

Navigation