Skip to main content
Log in

Chordal Editing is Fixed-Parameter Tractable

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Graph modification problems typically ask for a small set of operations that transforms a given graph to have a certain property. The most commonly considered operations include vertex deletion, edge deletion, and edge addition; for the same property, one can define significantly different versions by allowing different operations. We study a very general graph modification problem that allows all three types of operations: given a graph and integers , and , the chordal editing problem asks whether can be transformed into a chordal graph by at most vertex deletions, edge deletions, and edge additions. Clearly, this problem generalizes both chordal deletion and chordal completion (also known as minimum fill-in). Our main result is an algorithm for chordal editing in time , where and is the number of vertices of . Therefore, the problem is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm is both more efficient and conceptually simpler than the previously known algorithm for the special case chordal deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Refer to Sect. 6 for more intuition behind this observation.

  2. This can be surely extended to some local clique tree structure, and we use clique tree here for simplicity.

References

  1. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986). doi:10.1137/0215075

    Article  MathSciNet  MATH  Google Scholar 

  2. Berge, C.: Some classes of perfect graphs. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 155–166. Academic Press, New York (1967)

    Google Scholar 

  3. Berge, C.: Motivations and history of some of my conjectures. Discrete Math. 165–166, 61–70 (1997). doi:10.1016/S0012-365X(96)00161-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996). doi:10.1016/0020-0190(96)00050-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003). doi:10.1016/S0166-218X(02)00242-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Automata, Languages and Programming (ICALP), vol. 9134, pp. 306–317. Springer (2015). doi:10.1007/978-3-662-47672-7_25

  7. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures. Algorithmica (2014). doi:10.1007/s00453-014-9904-6

  8. Dearing, P.M., Shier, D.R., Warner, D.D.: Maximal chordal subgraphs. Discrete Appl. Math. 20(3), 181–190 (1988). doi:10.1016/0166-218X(88)90075-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25(1), 71–76 (1961). doi:10.1007/BF02992776

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Undegrad. Texts Comput. Sci. (2013). doi:10.1007/978-1-4471-5559-1

  11. Erdős, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publicationes Mathematicae Debrecen 9, 3–12 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Hajnal, A., Surányi, J.: Über die auflösung von graphen in vollständige teilgraphen. Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica 1, 113–121 (1958)

    MATH  Google Scholar 

  13. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922. A preliminary version appeared in FOCS 1994 (1999). doi:10.1137/S0097539796303044

  14. Krishnamoorthy, M.S., Deo, N.: Node-deletion NP-complete problems. SIAM J. Comput. 8(4), 619–625 (1979). doi:10.1137/0208049

    Article  MathSciNet  MATH  Google Scholar 

  15. Lewis, J.G., Peyton, B.W., Pothen, A.: A fast algorithm for reordering sparse matrices for parallel factorization. SIAM J. Sci. Stat. Comput. 10(6), 1146–1173 (1989). doi:10.1137/0910070

    Article  MathSciNet  MATH  Google Scholar 

  16. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230. Preliminary versions independently presented in STOC 1978 (1980). doi:10.1016/0022-0000(80)90060-4

  17. Mancini, F.: Graph Modification problems related to graph classes. Ph.D. thesis, University of Bergen, Bergen (2008)

  18. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424 (2006). doi:10.1016/j.tcs.2005.10.008

    Article  MathSciNet  MATH  Google Scholar 

  19. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010). doi:10.1007/s00453-008-9233-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9(4), 30.1–30.35. A preliminary version appeared in STACS 2010 (2013). doi:10.1145/2500119

  21. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128. A preliminary version appeared in WG 1999 (2001). doi:10.1016/S0166-218X(00)00391-7

  22. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004). doi:10.1016/j.orl.2003.10.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597–609 (1970). doi:10.1016/0022-247X(70)90282-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Reed, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, New York (1973)

    Google Scholar 

  25. Xue, J.: Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem. Networks 24(2), 109–120 (1994). doi:10.1002/net.3230240208

    Article  MathSciNet  MATH  Google Scholar 

  26. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods 2(1), 77–79 (1981). doi:10.1137/0602010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referees for their careful reading and helpful suggestions, and in particular for pointing out flaws in a preliminary version and suggesting a better proof for Lemma 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Marx.

Additional information

This article was supported by the European Research Council (ERC) Grant 280152 and the Hungarian Scientific Research Fund (OTKA) Grant NK105645. A preliminary version of this paper appeared in the proceedings of STACS 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Marx, D. Chordal Editing is Fixed-Parameter Tractable. Algorithmica 75, 118–137 (2016). https://doi.org/10.1007/s00453-015-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0014-x

Keywords

Navigation