Skip to main content
Log in

Fast Exact Algorithms Using Hadamard Product of Polynomials

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let C be an arithmetic circuit of size s, given as input that computes a polynomial \(f\in {\mathbb {F}}[x_1,x_2,\ldots ,x_n]\), where \({\mathbb {F}}\) is a finite field or the field of rationals. Using the Hadamard product of polynomials, we obtain new algorithms for the following two problems first studied by Koutis and Williams (Faster algebraic algorithms for path and packing problems, 2008, https://doi.org/10.1007/978-3-540-70575-8_47; ACM Trans Algorithms 12(3):31:1–31:18, 2016, https://doi.org/10.1145/2885499; Inf Process Lett 109(6):315–318, 2009, https://doi.org/10.1016/j.ipl.2008.11.004):

  • \({{{(\textit{k,n}){-}\mathrm{M{L}\normalsize {C}}}}}\): is the problem of computing the sum of the coefficients of all degree-k multilinear monomials in the polynomial f. We obtain a deterministic algorithm of running time \({n\atopwithdelims (){\downarrow k/2}}\cdot n^{O(\log k)}\cdot s^{O(1)}\). This improvement over the \(O(n^k)\) time brute-force search algorithm answers positively a question of Koutis and Williams (2016). As applications, we give exact counting algorithms, faster than brute-force search, for counting the number of copies of a tree of size k in a graph, and also the problem of exact counting of m-dimensional k-matchings.

  • \({{{\textit{k}{-}\mathrm{M{M}\normalsize {D}}}}}\): is the problem of checking if there is a degree-k multilinear monomial in the polynomial f with non-zero coefficient. We obtain a randomized algorithm of running time \(O(4.32^k\cdot n^{O(1)})\). Additionally, our algorithm is polynomial space bounded.

Other results include fast deterministic algorithms for \({{{(\textit{k,n}){-}\mathrm{M{L}\normalsize {C}}}}}\) and \({{{\textit{k}{-}\mathrm{M{M}\normalsize {D}}}}}\) problems for depth three circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this formulation, of course, the problem is a generalization of counting the degree-k multilinear monomials.

  2. The \(O^*\) notation suppresses factors polynomial in the input size.

  3. Throughout, we use \(y_i\) to denote noncommuting variables associated with the \(x_i\).

  4. This terminology is in keeping with a seminal paper’s in the field [1] which introduced color coding. However, it should be clear that this notion of coloring has nothing to do with graph colorings.

  5. Since the syntactic degree of the circuit is not bounded here, and if we have to account for the bit level complexity (over \({\mathbb {Z}}\)) of the scalars generated in the intermediate stage we may get field elements whose bit level complexity is exponential in the input size. So, a standard technique is to take a random prime of polynomial bit-size and evaluate the circuit modulo that prime.

  6. By 1.3k and 0.3k, we mean the integers \(\lceil 1.3k\rceil \) and \(\lceil 0.3k\rceil \), respectively.

  7. A polynomial g is positively weakly equivalent to f if it has the same set of nonzero monomials, with any positive coefficients.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995). https://doi.org/10.1145/210332.210337

    Article  MathSciNet  MATH  Google Scholar 

  2. Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Fast exact algorithms using Hadamard product of polynomials. CoRR arXiv:1807.04496 (2018)

  3. Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Efficient black-box identity testing over free group algebra (accepted in RANDOM 2019). CoRR arXiv:1904.12337 (2019)

  4. Arvind, V., Joglekar, P.S., Srinivasan, S.: Arithmetic circuits and the Hadamard product of polynomials. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15–17, 2009, IIT Kanpur, India, pp. 25–36 (2009)

  5. Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 677–686 (2010). https://doi.org/10.1145/1806689.1806782

  6. Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant. Comput. Complex. 27(1), 1–29 (2018). https://doi.org/10.1007/s00037-016-0148-5

  7. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In: Fiat, A., Sanders, P. (eds.) Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7–9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science. Springer, pp. 578–586 (2009). https://doi.org/10.1007/978-3-642-04128-0_52

  8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Evaluation of permanents in rings and semirings. Inf. Process. Lett. 110(20), 867–870 (2010). https://doi.org/10.1016/j.ipl.2010.07.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Brand, C., Dell, H., Husfeldt, T.: Extensor-coding. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25–29, 2018, pp. 151–164 (2018). https://doi.org/10.1145/3188745.3188902

  10. Brand, C., Pratt, K.: Parameterized applications of symbolic differentiation of (totally) multilinear polynomials. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12–16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 38:1–38:19 (2021)

  11. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  12. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Dell, H., Lapinskas, J.: Fine-grained reductions from approximate counting to decision. ACM Trans. Comput. Theory 13(2):8:1–8:24 (2021)

  14. Dell, H., Lapinskas, J., Meeks, K.: Approximately counting and sampling small witnesses using a colourful decision oracle. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020. SIAM, pp. 2201–2211 (2020)

  15. Demillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978). https://doi.org/10.1016/0020-0190(78)90067-4

    Article  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1

  17. Fischer, I.: Sums of like powers of multivariate linear forms. Math. Mag. 67(1), 59–61 (1994). https://doi.org/10.1080/0025570X.1994.11996185

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, D., van der Hoeven, J.: Faster polynomial multiplication over finite fields using cyclotomic coefficient rings. J. Complex. (2019). https://doi.org/10.1016/j.jco.2019.03.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Harvey, D., van der Hoeven, J.: Integer multiplication in time \({O}(n\log n)\). Ann. Math. 193, 563–617 (2021). https://doi.org/10.4007/annals.2021.193.2.4

    Article  MathSciNet  MATH  Google Scholar 

  20. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008). https://doi.org/10.1007/s00453-007-9008-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp. 575–586 (2008). https://doi.org/10.1007/978-3-540-70575-8_47

  22. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. ACM Trans. Algorithms 12(3):31:1–31:18 (2016). https://doi.org/10.1145/2885499

  23. Lee, H.: Power sum decompositions of elementary symmetric polynomials. Linear Algebra Applications 492(08) (2015)

  24. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, and complexity. Chic. J. Theor. Comput. Sci. (1997). http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html

  25. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995. IEEE Computer Society, pp. 182–191 (1995). https://doi.org/10.1109/SFCS.1995.492475

  26. Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5–8, 1991, New Orleans, Louisiana, USA, pp. 410–418 (1991). https://doi.org/10.1145/103418.103462

  27. Pratt, K.: Faster algorithms via waring decompositions. CoRR (2018). arXiv:1807.06194

  28. Pratt, K.: Waring rank, parameterized and exact algorithms. In: Zuckerman, D. (ed.) 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9–12, 2019. IEEE Computer Society, pp. 806–823 (2019). https://doi.org/10.1109/FOCS.2019.00053

  29. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Comput. Complex. 14(1), 1–19 (2005). https://doi.org/10.1007/s00037-005-0188-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Ryser, H.J.: Combinatorial mathematics. Carus mathematical monographs. Mathematical Association of America; distributed by Wiley (New York, 1963). https://books.google.co.in/books?id=wOruAAAAMAAJ

  31. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp. 60–71 (2008). https://doi.org/10.1007/978-3-540-70575-8_6

  32. Schwartz, J.T.: Fast probabilistic algorithm for verification of polynomial identities. J. ACM. 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  33. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010). https://doi.org/10.1561/0400000039

    Article  MathSciNet  MATH  Google Scholar 

  34. Strassen, V.: Vermeidung von divisionen. Journal für die reine und angewandte Mathematik 264, 184–202 (1973)

    MathSciNet  MATH  Google Scholar 

  35. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30–May 2, 1979, Atlanta, Georgia, USA, pp. 249–261 (1979)

  36. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983). https://doi.org/10.1137/0212043

    Article  MathSciNet  MATH  Google Scholar 

  37. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd ed. Cambridge University Press, Cambridge (2013)

  38. Williams, R.R.: Counting solutions to polynomial systems via reductions. In: Seidel, R. (ed.) 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7–10, 2018, New Orleans, LA, USA, volume 61 of OASICS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 6:1–6:15 (2018)

  39. Williams, R.R.: The polynomial method in circuit complexity applied to algorithm design (invited talk). In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New Delhi, India, pp. 47–60 (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.47

  40. Williams, R.: Finding paths of length k in O\({}^{\text{* }}\)(2\({}^{\text{ k }}\)) time. Inf. Process. Lett. 109(6), 315–318 (2009). https://doi.org/10.1016/j.ipl.2008.11.004

    Article  MathSciNet  MATH  Google Scholar 

  41. Williams, R.: Algorithms for circuits and circuits for algorithms. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11–13, 2014, pp. 248–261 (2014). https://doi.org/10.1109/CCC.2014.33

  42. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proceedinsg of the International Symposium on Symbolic and Algebraic Computation, pp. 216–226 (1979)

Download references

Acknowledgements

We are grateful to the referees for their comments and suggestions that have helped us improve the presentation. We thank anonymous reviewers of FSTTCS 2019 for their comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arvind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version was presented at the FSTTCS 2019 conference [3] (arxiv version [2])

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvind, V., Chatterjee, A., Datta, R. et al. Fast Exact Algorithms Using Hadamard Product of Polynomials. Algorithmica 84, 436–463 (2022). https://doi.org/10.1007/s00453-021-00900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00900-0

Keywords

Navigation