Skip to main content
Log in

Eternal Domination: D-Dimensional Cartesian and Strong Grids and Everything in Between

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the eternal domination game played on graphs, an attacker attacks a vertex at each turn and a team of guards must move a guard to the attacked vertex to defend it. The guards may only move to adjacent vertices on their turn. The goal is to determine the eternal domination number \(\gamma ^{\infty }_{all}\) of a graph, which is the minimum number of guards required to defend against an infinite sequence of attacks. This paper first continues the study of the eternal domination game on strong grids \(P_n\boxtimes P_m\). Cartesian grids \(P_n \square P_m\) have been vastly studied with tight bounds existing for small grids such as \(k\times n\) grids for \(k\in \{2,3,4,5\}\). It was recently proven that \(\gamma ^{\infty }_{all}(P_n \square P_m)=\gamma (P_n \square P_m)+O(n+m)\) where \(\gamma (P_n \square P_m)\) is the domination number of \(P_n \square P_m\) which lower bounds the eternal domination number [Lamprou et al. Eternally dominating large grids. Theoretical Computer Science, 794:27–46, 2019]. We prove that, for all \(n,m\in \mathbb {N^*}\) such that \(m\ge n\), \(\lfloor \frac{n}{3} \rfloor \lfloor \frac{m}{3} \rfloor +\Omega (n+m)=\gamma _{all}^{\infty } (P_{n}\boxtimes P_{m})=\lceil \frac{n}{3} \rceil \lceil \frac{m}{3} \rceil + O(m\sqrt{n})\) (note that \(\lceil \frac{n}{3} \rceil \lceil \frac{m}{3} \rceil\) is the domination number of \(P_n\boxtimes P_m\)). We then generalise our technique to prove that \(\gamma _{all}^{\infty }(G)=\gamma (G)+o(\gamma (G))\) for all graphs \(G\in {\mathcal {F}}\), where \({\mathcal {F}}\) is a large family of D-dimensional grids which are supergraphs of the D-dimensional Cartesian grid and subgraphs of the D-dimensional strong grid. In particular, \({\mathcal {F}}\) includes both the D-dimensional Cartesian grid and the D-dimensional strong grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. \(D \subseteq V\) is a dominating set of G if every vertex is in D or adjacent to a vertex in D.

  2. \(\alpha (G)\) is the maximum size of an independent set in G.

  3. \(\theta (G)\) is the minimum number of complete subgraphs of G whose union covers V(G).

References

  1. Arquilla, J., Fredricksen, H.: ”Graphing” an optimal grand strategy. Mil. Oper. Res. 1(3), 3–17 (1995)

    Article  Google Scholar 

  2. Bagan, G., Joffard, A., Kheddouci, H.: Eternal dominating sets on digraphs and orientations of graphs. CoRR (2018). arXiv:1805.09623

  3. Bard, S., Duffy, C., Edwards, M., Macgillivray, G., Yang, F.: Eternal domination in split graphs. J. Comb. Math. Comb. Comput. 101, 121–130 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Beaton, I., Finbow, S., MacDonald, J.A.: Eternal domination numbers of \(4\times n\) grid graphs. J. Comb. Math. Comb. Comput. 85, 33–48 (2013)

    MATH  Google Scholar 

  5. Braga, A., de Souza, C.C., Lee, O.: The eternal dominating set problem for proper interval graphs. Inf. Process. Lett. 115(6–8), 582–587 (2015)

    Article  MathSciNet  Google Scholar 

  6. Burger, A., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, N., Mc Inerney, F., Nisse, N., Pérennes, S.: Study of a combinatorial game in graphs through linear programming. Algorithmica 82(2), 212–244 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cohen, N., Martins, N .A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theor. Comput. Sci. 725, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 5th edn. Springer, Berlin (2012)

    Google Scholar 

  10. Finbow, S., Messinger, M.E., van Bommel, M.F.: Eternal domination in \(3 \times n\) grids. Australas. J. Comb. 61, 156–174 (2015)

    MATH  Google Scholar 

  11. Gagnon, A., Hassler, A., Huang, J., Krim-Yee, A., Mc Inerney, F., Mejía Zacarías, A., Seamone, B., Virgile, V.: A method for eternally dominating strong grids. Discrete Math. Theor. Comput. Sci. (2020). arXiv:2003.01495

  12. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Comb. Math. Comb. Comput. 52, 160–180 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Goldwasser, J.L., Klostermeyer, W.F., Mynhardt, C.M.: Eternal protection in grid graphs. Util. Math. 91, 47–64 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The domination number of grids. SIAM J. Discrete Math. 25(3), 1443–1453 (2011)

    Article  MathSciNet  Google Scholar 

  15. Klostermeyer, W., Lawrence, M., MacGillivray, G.: Dynamic dominating sets: the eviction model for eternal domination. J. Combin. Math. Combin. Comput 97, 247–269 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb. Math. Comb. Comput. 68, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Klostermeyer, W.F., Mynhardt, C.M.: Eternal total domination in graphs. Ars Comb. 68, 473–492 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Klostermeyer, W.F., Mynhardt, C.M.: Protecting a graph with mobile guards. Appl. Anal. Discrete Mathem. 10(1), 1–29 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lamprou, I., Martin, R., Schewe, S.: Eternally dominating large grids. Theorer. Comput. Sci. 794, 27–46 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mc Inerney, F., Nisse, N., Pérennes, S.: Eternal domination in grids. In :Proceedings of the 11th international conference on algorithms and complexity, CIAC 2019, volume 11485 of lecture notes in computer science. Springer, Cham, pp 311–322 (2019)

  21. Messinger, M.E.: Closing the gap: eternal domination on \(3\times n\) grids. Contrib. Discrete Mathem. 12(1), 47–61 (2017)

    MATH  Google Scholar 

  22. Revelle, C.S.: Can you protect the roman empire? Johns Hopkins Magazine 50(2) (1997)

  23. Revelle, C.S., Rosing, K.E.: Defendens imperium romanum: a classical problem in military strategy. Am. Mathem. Monthly 107, 585–594 (2000)

    Article  MathSciNet  Google Scholar 

  24. Rinemberg, M., Soulignac, F.J.: The eternal dominating set problem for interval graphs. Inf. Process. Lett. 146, 27–29 (2019)

    Article  MathSciNet  Google Scholar 

  25. Stewart, I.: Defend the Roman empire!. Sci. Am. 281(6), 136–138 (1999)

    Article  Google Scholar 

  26. van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of \(5\times n\) grid graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fionn Mc Inerney.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by the ANR project DISTANCIA (ANR-14-CE25-0006). An extended abstract of part of this paper has been presented in [20].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mc Inerney, F., Nisse, N. & Pérennes, S. Eternal Domination: D-Dimensional Cartesian and Strong Grids and Everything in Between. Algorithmica 83, 1459–1492 (2021). https://doi.org/10.1007/s00453-020-00790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00790-8

Keywords

Navigation