Skip to main content
Log in

Study of a Combinatorial Game in Graphs Through Linear Programming

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Spy game played on a graph G, a single spy travels the vertices of G at speed s, while multiple slow guards strive to have, at all times, one of them within distance d of that spy. In order to determine the smallest number of guards necessary for this task, we analyze the game through a Linear Programming formulation and the fractional strategies it yields for the guards. We then show the equivalence of fractional and integral strategies in trees. This allows us to design a polynomial-time algorithm for computing an optimal strategy in this class of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guard-number of grids and tori, which gives a lower bound for the integral guard-number in these graphs. We believe that the approach using fractional relaxation and Linear Programming is promising to obtain new results in the field of combinatorial games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For any graph G, any integer \(\ell \) and \(v\in V(G)\), let \(N_{\ell }[v]\) be the set of vertices at distance at most \(\ell \) from v in G and let \(N[v]=N_1[v]\).

  2. Indeed, \(O((n/d)^2)\) vertices are sufficient to dominate every vertex at distance d in \(G_{n \times n}\) (tiling the grid with vertex-disjoint balls of radius d).

  3. In strategy \(P_{2r_1}\), that guard must be at distance \(\le d\) from \((2r_1,2j_1)\) when the spy visits it.

  4. Similarly, for strategy \(P_{2r_2}\).

  5. Solving the LP for \(n\ge 150\) takes more than one hour on a basic laptop.

References

  1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8, 1–12 (1984)

    Article  MathSciNet  Google Scholar 

  2. Balister, P., Shaw, A., Bollobás, B., Narayanan, B.P.: Catching a fast robber on the grid. JCTA 152, 341–352 (2017)

    Article  MathSciNet  Google Scholar 

  3. Beaton, I., Finbow, S., MacDonald, J.A.: Eternal domination numbers of \(4\times n\) grid graphs. J. Comb. Math. Comb. Comput. 85, 33–48 (2013)

    MATH  Google Scholar 

  4. Bonato, A., Chiniforooshan, E., Pralat, P.: Cops and robbers from a distance. Theor. Comput. Sci. 411(43), 3834–3844 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  6. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, Berlin (2008)

    Google Scholar 

  7. Burger, A., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Cohen, N., Hilaire, M., Martins, N.A., Nisse, N., Pérennes, S.: Spy-game on graphs. In: 8th International Conference on Fun with Algorithms, FUN 2016, pp. 10:1–10:16 (2016)

  9. Cohen, N., Mc Inerney, F., Nisse, N., Pérennes, S.: Study of a combinatorial game in graphs through linear programming. In: 28th International Symposium on Algorithms and Computation (ISAAC 2017), LIPIcs 92, Schloss Dagstuhl, pp. 22:1–22:13 (2017). https://hal.archives-ouvertes.fr/hal-01462890

  10. Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theor. Comput. Sci. 725, 1–15 (2018). https://hal.archives-ouvertes.fr/hal-01782246v1

  11. Delaney, A.Z., Messinger, M.E.: Closing the gap: Eternal domination on \(3\times n\) grids. Contrib. Discrete Math. (2015)

  12. Fomin, F.V., Giroire, F., Jean-Marie, A., Mazauric, D., Nisse, N.: To satisfy impatient web surfers is hard. In: 6th International Conference on Fun with Algorithms (FUN), LNCS, vol. 7288, pp. 166–176 (2012)

  13. Fomin, F.V., Golovach, P.A., Kratochvíl, J., Nisse, N., Suchan, K.: Pursuing a fast robber on a graph. Theor. Comput. Sci. 411(7–9), 1167–1181 (2010)

    Article  MathSciNet  Google Scholar 

  14. Giroire, F., Mazauric, D., Nisse, N., Pérennes, S., Soares, R.P.: Connected surveillance game. In: Moscibroda, T., Rescigno, A.A. (eds.) 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO). Lecture Notes in Computer Science. Springer, Berlin (2013)

    Google Scholar 

  15. Giroire, F., Nisse, N., Pérennes, S., Soares, R.P.: Fractional combinatorial games. Technical report, INRIA, (2013). RR8371. http://hal.inria.fr/hal-00865345

  16. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Comb. Math. Comb. Comput. 52, 160–180 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The domination number of grids. SIAM J. Discrete Math. 25(3), 1443–1453 (2011)

    Article  MathSciNet  Google Scholar 

  18. Joret, G., Kaminski, M., Theis, D.O.: The cops and robber game on graphs with forbidden (induced) subgraphs. Contrib. Discrete Math. 5(2), 40–51 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Kinnersley, W.B.: Cops and robbers is exptime-complete. JCTB 111, 201–220 (2015)

    Article  MathSciNet  Google Scholar 

  20. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb. Math. Comb. Comput. 68, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-Chordal graphs: from cops and robber to compact routing via treewidth. Algorithmica 72(3), 758–777 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kusters, R.: Memoryless determinacy of parity games. In: Automata, Logics, and Infinite Games: A Guide to Current Research, LNCS, vol. 2500, pp. 95–106 (2002)

  23. Lamprou, I., Martin, R., Schewe, S.: Perpetually dominating large grids. In: 10th International Conference on Algorithms and Complexity (CIAC 2017), LNCS, vol. 10236, pp. 393–404 (2017)

  24. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43, 235–239 (1983)

    Article  MathSciNet  Google Scholar 

  25. Quilliot, A.: Problèmes de jeux, de point fixe, de connectivité et de représentation sur des graphes, des ensembles ordonnés et des hypergraphes. Doctorat d’état, Univ. Paris 4 (1983)

  26. Schröder, B.S.W.: The copnumber of a graph is bounded by \(\lfloor \frac{3}{2} genus (g) \rfloor + 3\). In: Koslowski, J., Melton, A. (eds.) Categorical Perspectives (Kent, OH, 1998). Trends in Mathematics, pp. 243–263. Birkhäuser, Boston (2001)

    Google Scholar 

  27. Scott, A., Sudakov, B.: A bound for the cops and robbers problem. SIAM J. Discrete Math. 25(3), 1438–1442 (2011)

    Article  MathSciNet  Google Scholar 

  28. van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of \(5\times n\) grid graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Nisse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program “Investments for the Future” under reference ANR-11- LABX-0031-01, the associated Inria team AlDyNet. Extended abstracts of parts of this paper have been presented in [8] (Sect. 5.1) and [9].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, N., Mc Inerney, F., Nisse, N. et al. Study of a Combinatorial Game in Graphs Through Linear Programming. Algorithmica 82, 212–244 (2020). https://doi.org/10.1007/s00453-018-0503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0503-9

Keywords

Navigation