Skip to main content
Log in

Inorganic salt starvation improves the polysaccharide production and CO2 fixation by Porphyridium purpureum

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The microalgae industry shows a promising future in the production of high-value products such as pigments, phycoerythrin, polyunsaturated fatty acids, and polysaccharides. It was found that polysaccharides have high biomedical value (such as antiviral, antibacterial, antitumor, antioxidative) and industrial application prospects (such as antioxidants). This study aimed to improve the polysaccharides accumulation of Porphyridium purpureum CoE1, which was effectuated by inorganic salt starvation strategy whilst supplying rich carbon dioxide. At a culturing temperature of 25 °C, the highest polysaccharide content (2.89 g/L) was achieved in 50% artificial seawater on the 12th day. This accounted for approximately 37.29% of the dry biomass, signifying a 25.3% increase in polysaccharide production compared to the culture in 100% artificial seawater. Subsequently, separation, purification and characterization of polysaccharides produced were conducted. Furthermore, the assessment of CO2 fixation capacity during the cultivation of P. purpureum CoE1 was conducted in a 10 L photobioreactor. This indicated that the strain exhibited an excellent CO2 fixation capacity of 1.66 g CO2/g biomass/d. This study proposed an efficient and feasible approach that not only increasing the yield of polysaccharides by P. purpureum CoE1, but also fixing CO2 with a high rate, which showed great potential in the microalgae industry and Bio-Energy with Carbon Capture and Storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Wang X, Jiang H, Cai C, Li G, Hao J, Yu G (2018) Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: an overview. Carbohydr Polym 195:601–612. https://doi.org/10.1016/j.carbpol.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Hu Y, Duan X, Tang T, Shen Y, Hu B, Liu A, Chen H, Li C, Liu Y (2018) Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int J Biol Macromol 113:1–7. https://doi.org/10.1016/j.ijbiomac.2018.02.084

    Article  CAS  PubMed  Google Scholar 

  3. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Wen X, Xu Y, Ding Y, Geng Y, Li Y (2018) Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG-1 via CO2-regulated pH in indoor and outdoor open reactors. Sci Total Environ 619:827–833. https://doi.org/10.1016/j.scitotenv.2017.10.127

    Article  CAS  PubMed  Google Scholar 

  5. Jiao K, Chang J, Zeng X, Ng I-S, Xiao Z, Sun Y, Tang X, Lin L (2017) 5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnol Biofuels 10:168. https://doi.org/10.1186/s13068-017-0855-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Y, Jiao K, Zhong H, Wu S, Ho SH, Zeng X, Li J, Tang X, Sun Y, Lin L (2020) Correction to: Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum. Bioprocess Biosyst Eng 43:357. https://doi.org/10.1007/s00449-019-02274-8

    Article  CAS  PubMed  Google Scholar 

  7. Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L (2016) Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour Bioprocess 3:33. https://doi.org/10.1186/s40643-016-0110-z

    Article  Google Scholar 

  8. Chang J, Le K, Song X, Jiao K, Zeng X, Ling X, Shi T, Tang X, Sun Y, Lin L (2017) Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 40:1763–1773. https://doi.org/10.1007/s00449-017-1831-x

    Article  CAS  PubMed  Google Scholar 

  9. Jiao K, Xiao W, Xu Y, Zeng X, Ho SH, Laws EA, Lu Y, Ling X, Shi T, Sun Y, Tang X, Lin L (2018) Using a trait-based approach to optimize mixotrophic growth of the red microalga Porphyridium purpureum towards fatty acid production. Biotechnol Biofuels 11:273. https://doi.org/10.1186/s13068-018-1277-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen L, Huang G (2018) The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 115:77–82. https://doi.org/10.1016/j.ijbiomac.2018.04.056

    Article  CAS  PubMed  Google Scholar 

  11. Netanel Liberman G, Ochbaum G, Malis Arad S, Bitton R (2016) The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions. Carbohydr Polym 152:658–664. https://doi.org/10.1016/j.carbpol.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H (2019) The antioxidant activity of polysaccharides derived from marine organisms: an overview. Mar Drugs 17:674. https://doi.org/10.3390/md17120674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutherland IW (2007) Bacterial exopolysaccharides. Compr Glycosci 2:521–558. https://doi.org/10.1016/B978-044451967-2/00133-1

    Article  CAS  Google Scholar 

  14. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054

    Article  CAS  PubMed  Google Scholar 

  15. Iqbal M, Zafar SI (1993) Effects of photon flux density, CO2, aeration rate, and inoculum density on growth and extracellular polysaccharide production by Porphyridium cruentum. Folia Microbiol 38:509–514. https://doi.org/10.1007/BF02814405

    Article  Google Scholar 

  16. Soanen N, Silva ED, Gardarin C, Michaud P, Laroche C (2016) Improvement of exopolysaccharide production by Porphyridium marinum. Bioresour Technol 213:231–238. https://doi.org/10.1016/j.biortech.2016.02.075

    Article  CAS  PubMed  Google Scholar 

  17. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209. https://doi.org/10.1111/1751-7915.12167

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Wang C, Ma C, Shi L (2010) Optimization of renewal regime for improvement of polysaccharides production from Porphyridium cruentum by uniform design. Bioprocess Biosyst Eng 33:309–315. https://doi.org/10.1007/s00449-009-0325-x

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Ji L, Chen C, Zhao S, Sun M, Gao Z, Wu H, Fan J (2020) Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol 309:123362. https://doi.org/10.1016/j.biortech.2020.123362

    Article  CAS  PubMed  Google Scholar 

  20. Jiao K, Xiao W, Shi X, Ho SH, Chang JS, Ng IS, Tang X, Sun Y, Zeng X, Lin L (2021) Molecular mechanism of arachidonic acid biosynthesis in Porphyridium purpureum promoted by nitrogen limitation. Bioprocess Biosyst Eng 44:1491–1499. https://doi.org/10.1007/s00449-021-02533-7

    Article  CAS  PubMed  Google Scholar 

  21. Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (2000) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 12:99. https://doi.org/10.1023/A:1008189312167

    Article  Google Scholar 

  22. Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Mar Freshwater Res 36:785–792. https://doi.org/10.1071/MF9850785

    Article  CAS  Google Scholar 

  23. Coward T, Fuentes-Grünewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW (2016) Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour Technol 221:607–615. https://doi.org/10.1016/j.biortech.2016.09.093

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Chen Y, Liu X, Li Y, Xu J, Li T, Xiang W, Li A (2023) Effect of salinity on the biochemical characteristics and antioxidant activity of exopolysaccharide of Porphyridium purpureum FACHB 806. Front Mar Sci 9:1097200. https://doi.org/10.3389/fmars.2022.1097200

    Article  Google Scholar 

  25. Fimbres-Olivarria D, Carvajal-Millan E, Lopez-Elias JA, Martinez-Robinson KG, Miranda-Baeza A, Martinez-Cordova LR, Enriquez-Ocaa F, Valdez-Holguin JE (2018) Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocolloids 75:229–236. https://doi.org/10.1016/j.foodhyd.2017.08.002

    Article  CAS  Google Scholar 

  26. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Alam MA, Mehmood MA (2019) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704:135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  CAS  PubMed  Google Scholar 

  27. Nair AT, Senthilnathan J, Nagendra SMS (2019) Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. J Water Process Eng 28:322–330. https://doi.org/10.1016/j.jwpe.2019.02.017

    Article  Google Scholar 

  28. Iqbal M, Grey D, Sepan-Sarkissian G, Fowler MW (1993) Interactions between the unicellular red alga Porphyridium cruentum and associated bacteria. EUR J PHYCOL 28:63–68. https://doi.org/10.1080/09670269300650101

    Article  Google Scholar 

  29. Iqbal M, Zafar SI (1993) Bioactivity of immobilized microalgal cells: application potential of vegetable sponge in microbial biotechnology. Lett Appl Microbiol 17:289–291. https://doi.org/10.1111/j.1472-765x.1993.tb01469.x

    Article  Google Scholar 

  30. Wang J, Chen B, Rao X, Huang J, Li M (2007) Optimization of culturing conditions of Porphyridium cruentum using uniform design. World J Microbiol Biotechnol 23:1345–1350. https://doi.org/10.1007/s11274-007-9369-8

    Article  Google Scholar 

  31. Lu X, Nan F, Feng J, Lv J, Liu Q, Liu X, Xie S (2020) Effects of different environmental factors on the growth and bioactive substance accumulation of Porphyridium purpureum. Int J Environ Res Public Health 17:2221. https://doi.org/10.3390/ijerph17072221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji L, Li S, Chen C, Jin H, Wu H, Fan J (2021) Physiological and transcriptome analysis elucidates the metabolic mechanism of versatile Porphyridium purpureum under nitrogen deprivation for exopolysaccharides accumulation. Bioresour Bioprocess 8:73. https://doi.org/10.1186/s40643-021-00426-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ferreira AS, Mendonça I, Póvoa I, Carvalho H, Correia A, Vilanova M, Silva TH, Coimbra MA, Nunes C (2021) Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Res 59:102439. https://doi.org/10.1016/j.algal.2021.102439

    Article  Google Scholar 

  34. Parra-Riofrío G, Casas-Arrojo V, Pino-Selles R, García-Márquez J, Abdala-Díaz RT, Uribe-Tapia E (2021) Adaptation of autotrophic to heterotrophic culture of Porphyridium purpureum (Bory) K.M. Drew & R. Ross: characterization of biomass and production of exopolysaccharides. J Appl Phycol 33:3603–3615. https://doi.org/10.1007/s10811-021-02566-1

    Article  CAS  Google Scholar 

  35. Zhang AH, Feng B, Zhang H, Jiang J, Zhang D, Du Y, Cheng Z, Huang J (2022) Efficient cultivation of Porphyridium purpureum integrated with swine wastewater treatment to produce phycoerythrin and polysaccharide. J Appl Phycol 34:2315–2326. https://doi.org/10.1007/s10811-022-02785-0

    Article  CAS  Google Scholar 

  36. Yin H-C, Sui J-K, Han T-L, Liu T-Z, Wang H (2022) Integration bioprocess of B-phycoerythrin and exopolysaccharides production from photosynthetic microalga Porphyridium cruentum. Front Mar Sci 8:836370. https://doi.org/10.3389/fmars.2021.836370

    Article  Google Scholar 

  37. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120

    Article  CAS  PubMed  Google Scholar 

  38. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biot 94:1495–1503. https://doi.org/10.1007/s00253-012-3940-4

    Article  CAS  Google Scholar 

  39. Sheath RG, Hellebust JA, Sawa T (1979) Floridean starch metabolism of Porphyridium purpureum (Rhodophyta). II. Changes during the cell cycle*. Phycologia 18:185–190. https://doi.org/10.2216/i0031-8884-18-3-185.1

    Article  CAS  Google Scholar 

  40. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1:70–76. https://doi.org/10.1016/j.algal.2012.02.002

    Article  CAS  Google Scholar 

  41. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schoeters F, Spit J, Swinnen E, Cuyper AD, Vleugels R, Miert INSV (2023) Pilot-scale cultivation of the red alga Porphyridium purpureum over a two-year period in a greenhouse. J Appl Phycol 35:2095–2109. https://doi.org/10.1007/s10811-023-03045-5

    Article  CAS  Google Scholar 

  43. Akimoto M, Shirai A, Ohtaguchi K, Koide K (1998) Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga porphyridium cruentum. Appl Biochem Biotech 73:269–278. https://doi.org/10.1007/BF02785661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the special fund for Fujian Ocean High-Tech Industry Development (No. FJHJF-L-2018-1) and the Natural Science Foundation of Fujian Province of China (No. 2019J06005).

Author information

Authors and Affiliations

Authors

Contributions

LY and WS carried out the experiments and data analysis. LY, WS, CH, XW, LC, PZ, LZ, LJ and ZX wrote the manuscript. WS and ZX revised the manuscript. WS, XW, LL and ZX contributed to resource and methodology. ZX managed and supervised the project. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shengshan Wu or Xianhai Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The authors declare that the data supporting the findings in this study are presented within the paper. The data are also available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, S., Chen, H. et al. Inorganic salt starvation improves the polysaccharide production and CO2 fixation by Porphyridium purpureum. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03017-0

Keywords

Navigation