Skip to main content
Log in

A critical review of enzymes immobilized on chitosan composites: characterization and applications

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan’s structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Tech 35(2–3):126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

    Article  CAS  Google Scholar 

  2. Rehman S, Wang P, Bhatti HN, Bilal M, Asgher M (2017) Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films. Int J Biol Macromol 97:279–286. https://doi.org/10.1016/j.ijbiomac.2017.01.038

    Article  CAS  PubMed  Google Scholar 

  3. Sharma S, Gupta PS, Arya SK, Kaur A (2022) Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem. https://doi.org/10.1016/j.procbio.2022.05.022

    Article  Google Scholar 

  4. Sampaio CS, Angelotti JA, Fernandez-Lafuente R, Hirata DB (2022) Lipase immobilization via cross-linked enzyme aggregates: problems and prospects—a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.06.139

    Article  PubMed  Google Scholar 

  5. Preethi PS, Hariharan NM, Vickram S, Manian R, Manikandan S, Subbaiya R, Karmegam N, Yadav V, Ravindran B, Chang SW, Awasthi MK (2022) Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.127444

    Article  PubMed  Google Scholar 

  6. Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C (2022) Cellulose-and xylan-degrading yeasts: enzymes, applications and biotechnological potential. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2022.107981

    Article  PubMed  Google Scholar 

  7. Nemiwal M, Zhang TC, Kumar D (2022) Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb Tech. https://doi.org/10.1016/j.enzmictec.2022.110006

    Article  Google Scholar 

  8. Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JS, Tacias-Pascacio VG, Fernandez-Lafuente R (2022) A review on the immobilization of pepsin: a Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.224

    Article  PubMed  Google Scholar 

  9. Kujawa J, Głodek MLiG, Al-Gharabli S, Knozowska K, Kujawski W (2021) Highly effective enzymes immobilization on ceramics: requirements for supports and enzymes. Sci Total Environ 801(149647):10. https://doi.org/10.1016/j.scitotenv.2021.149647

    Article  CAS  Google Scholar 

  10. Ghosh M, Nanda G (1991) Immobilized Aspergillus sydowii produces xylanase. Biotech Lett 13(11):807–808. https://doi.org/10.1007/BF01026764

    Article  CAS  Google Scholar 

  11. Lu J, Nie M, Li Y, Zhu H, Shi G (2022) Design of composite nanosupports and applications thereof in enzyme immobilization: a review. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2022.112602

    Article  Google Scholar 

  12. Ellis GA, Díaz SA, Medintz IL (2021) Enhancing enzymatic performance with nanoparticle immobilization: improved analytical and control capability for synthetic biochemistry. Curr Opin Biotechnol 71:77–90. https://doi.org/10.1016/j.copbio.2021.06.021

    Article  CAS  PubMed  Google Scholar 

  13. Thakur M, Wang B, Verma ML (2022) Development and applications of nanobiosensors for sustainable agricultural and food industries: recent developments, challenges and perspectives. Environ Technol Innov. https://doi.org/10.1016/j.eti.2022.102371

    Article  Google Scholar 

  14. Arora A, Nandal P, Singh J, Verma ML (2020) Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater Sci 3:308–318. https://doi.org/10.1016/j.mset.2019.12.003

    Article  CAS  Google Scholar 

  15. Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett 15(4):555–560. https://doi.org/10.1007/s10311-017-0640-4

    Article  CAS  Google Scholar 

  16. Chandel H, Kumar P, Chandel AK, Verma ML (2022) Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02746-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qamar M, Basharat A, Qamar SA, Bilal M, Franco M, Iqbal HM (2022) Enzyme-loaded nanostructured materials for the degradation of environmental pollutants. Curr Opin Environ Sci Health 30:100400. https://doi.org/10.1016/j.coesh.2022.100400

    Article  Google Scholar 

  18. Verma ML, Dhanya BS, Rani V, Thakur M, Jeslin J, Kushwaha R (2020) Carbohydrate and protein based biopolymeric nanoparticles: current status and biotechnological applications. Int J Biol Macromol 154:390–412. https://doi.org/10.1016/j.ijbiomac.2020.03.105

    Article  CAS  PubMed  Google Scholar 

  19. Kyomuhimbo HD, Brink HG (2023) Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e13156

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shokri Z, Seidi F, Karami S, Li C, Saeb MR, Xiao H (2021) Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydr Polym 262:117963. https://doi.org/10.1016/j.carbpol.2021.117963

    Article  CAS  PubMed  Google Scholar 

  21. Bilal M, Iqbal HM (2019) Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int J Biol Macromol 130:462–482. https://doi.org/10.1016/j.ijbiomac.2019.02.152

    Article  CAS  PubMed  Google Scholar 

  22. Rafiee F, Rezaee M (2021) Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 179:170–195. https://doi.org/10.1016/j.ijbiomac.2021.02.198

    Article  CAS  PubMed  Google Scholar 

  23. He Q, Gong K, Ao Q, Ma T, Yan Y, Gong Y, Zhang X (2013) Positive charge of chitosan retards blood coagulation on chitosan films. J Biomater Appl 27(8):1032–1045. https://doi.org/10.1177/0885328211432487

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Liu X, Jiang Q, Yu D, Xu Y, Wang B, Xia W (2021) Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr Polym 260:117778. https://doi.org/10.1016/j.carbpol.2021.117778

    Article  CAS  PubMed  Google Scholar 

  25. Begum S, Yuhana NY, Saleh NM, Kamarudin NHN, Sulong AB (2021) Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr Polym 259:117613. https://doi.org/10.1016/j.carbpol.2021.117613

    Article  CAS  PubMed  Google Scholar 

  26. Esquerdo VM, Cadaval TRS Jr, Dotto G, Pinto LAA (2014) Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J Colloid Interf Sci 424:7–15. https://doi.org/10.1016/j.jcis.2014.02.0286

    Article  CAS  Google Scholar 

  27. Zhao Y, Yang L, Xu M, Wang H, Gao X, Niu B, Li W (2022) Gallic acid functionalized chitosan immobilized nanosilver for modified chitosan/Poly (vinyl alcohol) composite film. Int J Biol Macromol 222:2987–3000. https://doi.org/10.1016/j.ijbiomac.2022.10.074

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Li L, Si J, Li T, Xu Z, Jiang Y, Hu X, Yang H (2023) Dihydroflavonol 4-reductase immobilized on Fe3O4-chitosan nanoparticles as a nano-biocatalyst for synthesis of anthocyanidins. Chem Phys Lett 815:140353. https://doi.org/10.1016/j.cplett.2023.140353

    Article  CAS  Google Scholar 

  29. Eivazzadeh-Keihan R, Rahmati S, Sadat Z, Ganjali F, Aliabadi HAM, Kashtiaray A, Maleki A (2023) Purification of Alkaline phosphatase from bovine milk through metal ion affinity by a novel magnetic nanocomposite based on functionalized chitosan with dopamine and nickel. Materials. https://doi.org/10.1016/j.mtcomm.2023.105461

    Article  Google Scholar 

  30. Khan A, Alamry KA (2021) Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: a review. Carbohydr Res 506:108368. https://doi.org/10.1016/J.CARRES.2021.108368

    Article  CAS  PubMed  Google Scholar 

  31. Bagheri AR, Aramesh N, Lee HK (2022) Chitosan-and/or cellulose-based materials in analytical extraction processes: a review. TrAC. https://doi.org/10.1016/j.trac.2022.116770

    Article  Google Scholar 

  32. Vedula SS, Yadav GD (2021) Chitosan-based membranes preparation and applications: challenges and opportunities. J Indian Chem Soc 98(2):100017. https://doi.org/10.1016/j.jics.2021.100017

    Article  CAS  Google Scholar 

  33. Huq T, Khan A, Brown D, Dhayagude N, He Z, Ni Y (2022) Sources, production and commercial applications of fungal chitosan: a review. JB&B. https://doi.org/10.1016/j.jobab.2022.01.002

    Article  Google Scholar 

  34. de Farias BS, Junior TRSAC, de Almeida Pinto LA (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenges and prospects for food applications. Int J Biol Macromol 123:210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042

    Article  CAS  PubMed  Google Scholar 

  35. Sacco P, Cok M, Asaro F, Paoletti S, Donati I (2018) The role played by the molecular weight and acetylation degree in modulating the stiffness and elasticity of chitosan gels. Carbohydr Polym 196:405–413. https://doi.org/10.1016/j.carbpol.2018.05.060

    Article  CAS  PubMed  Google Scholar 

  36. Tavares L, Flores EEE, Rodrigues RC, Hertz PF, Noreña CPZ (2020) Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocoll 106:105876. https://doi.org/10.1016/j.foodhyd.2020.105876

    Article  CAS  Google Scholar 

  37. Sjoholm KH, Cooney M, Minteer SD (2009) Effects of degree of deacetylation on enzyme immobilization in hydrophobically modified chitosan. Carbohydr Polym 77(2):420–424. https://doi.org/10.1016/j.carbpol.2009.02.006

    Article  CAS  Google Scholar 

  38. de Farias BS, Grundmann DDR, Rizzi FZ, Martins NSS, Junior TRSAC, de Almeida Pinto LA (2019) Production of low molecular weight chitosan by acid and oxidative pathways: effect on physicochemical properties. Food Res Int 123:88–94. https://doi.org/10.1016/j.foodres.2019.04.051

    Article  CAS  PubMed  Google Scholar 

  39. Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, Hirayama F, Otagiri M (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 199:141–149. https://doi.org/10.1016/j.carbpol.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Cao J, Jiang W (2022) Analysis of film-forming properties of chitosan with different molecular weights and its adhesion properties with different postharvest fruit surfaces. Food Chem 395:133605. https://doi.org/10.1016/j.foodchem.2022.133605

    Article  CAS  PubMed  Google Scholar 

  41. Long J, Xu E, Li X, Wu Z, Wang F, Xu X, Jin Z, Jiao A, Zhan X (2016) Effect of chitosan molecular weight on the formation of chitosan–pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4–κ-carrageenan nanoparticles. Food Chem 202:49–58. https://doi.org/10.1016/j.foodchem.2016.01.119

    Article  CAS  PubMed  Google Scholar 

  42. Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU, Shumzaid M, Kakar MU, Khan TK, Akabar MD, Hussain MI, Zhou QG (2019) Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol 129:827–843. https://doi.org/10.1016/j.ijbiomac.2019.01.192

    Article  CAS  PubMed  Google Scholar 

  43. Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H (2019) A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 220:60–70. https://doi.org/10.1016/j.carbpol.2019.05.050

    Article  CAS  PubMed  Google Scholar 

  44. Lim C, Hwang DS, Lee DW (2021) Intermolecular interactions of chitosan: degree of acetylation and molecular weight. Carbohydr Polym 259:117782. https://doi.org/10.1016/j.carbpol.2021.117782

    Article  CAS  PubMed  Google Scholar 

  45. Saheed IO, Da Oh W, Suah FBM (2021) Chitosan modifications for adsorption of pollutants—a review. J Hazard 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889

    Article  CAS  Google Scholar 

  46. Ribeiro ES, de Farias BS, Junior TRSAC, de Almeida Pinto LA, Diaz PS (2021) Chitosan–based nanofibers for enzyme immobilization. Int J Biol Macromol 183:1959–1970. https://doi.org/10.1016/j.ijbiomac.2021.05.214

    Article  CAS  PubMed  Google Scholar 

  47. Kadam AA, Sharma B, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Kim DY, Sung JS (2020) Thiolation of chitosan loaded over super-magnetic halloysite nanotubes for enhanced laccase immobilization. Nanomaterials 10(12):2560. https://doi.org/10.3390/nano10122560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manzo RM, Ceruti RJ, Bonazza HL, Adriano WS, Sihufe GA, Mammarella EJ (2018) Immobilization of carboxypeptidase A into modified chitosan matrixes by covalent attachment. Appl Biochem Biotechnol 185:1029–1043. https://doi.org/10.1007/s12010-018-2708-4

    Article  CAS  PubMed  Google Scholar 

  49. Maftoon H, Taravati A, Tohidi F (2023) Immobilization of laccase on carboxyl-functionalized chitosan-coated magnetic nanoparticles with improved stability and reusability. Monatsh Chem. https://doi.org/10.1007/s00706-022-03029-0

    Article  Google Scholar 

  50. Yuan Y, Tan W, Zhang J, Li Q, Guo Z (2022) Water-soluble amino functionalized chitosan: preparation, characterization, antioxidant and antibacterial activities. Int J Biol Macromol 217:969–978. https://doi.org/10.1016/j.ijbiomac.2022.07.187

    Article  CAS  PubMed  Google Scholar 

  51. Patel SK, Gupta RK, Kondaveeti S, Otari SV, Kumar A, Kalia VC, Lee JK (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  CAS  PubMed  Google Scholar 

  52. Tapdigov SZ (2021) The bonding nature of the chemical interaction between trypsin and chitosan based carriers in immobilization process depend on entrapped method: a review. Int J Biol Macromol 183:1676–1696. https://doi.org/10.1016/j.ijbiomac.2021.05.059

    Article  CAS  PubMed  Google Scholar 

  53. Phadungcharoen N, Winotapun W, Khomniyawanit A, Krataichan F, Rojanarata T (2019) Facile and green fabrication of biocatalytic chitosan beads by one-step genipin-mediated β-glucosidase immobilization for production of bioactive genistein. Sustain Chem Pharm 14:100187. https://doi.org/10.1016/j.scp.2019.100187

    Article  Google Scholar 

  54. Pinheiro BB, Rios NS, Aguado ER, Fernandez-Lafuente R, Freire TM, Fechine PB, Santo JC, Goncalves LR (2019) Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol 130:798–809. https://doi.org/10.1016/j.ijbiomac.2019.02.145

    Article  CAS  PubMed  Google Scholar 

  55. Fonseca LR, Santos TP, Czaikoski A, Cunha RL (2020) Modulating properties of polysaccharides nanocomplexes from enzymatic hydrolysis of chitosan. Food Res Int 137:109642. https://doi.org/10.1016/j.foodres.2020.109642

    Article  CAS  Google Scholar 

  56. He W, Tian L, Fang F, Chen D, Federici E, Pan S, Jones OG (2021) Limited hydrolysis and conjugation of zein with chitosan oligosaccharide by enzymatic reaction to improve functional properties. Food Chem 348:129035. https://doi.org/10.1016/j.foodchem.2021.129035

    Article  CAS  PubMed  Google Scholar 

  57. Tran DL, Le Thi P, Thi TTH, Park KD (2020) Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and promoted cellular behaviors under hyperglycemia. Prog Nat Sci 30(5):661–668. https://doi.org/10.1016/j.pnsc.2020.08.004

    Article  CAS  Google Scholar 

  58. Tu H, Zhang B, Zhang X, Zhao C, Li L, Wang J, Chen Z, Wang P, Li Z (2021) Magnetic thermosensitive polymer composite carrier with target spacing for enhancing immobilized enzyme performance. Enzyme Microb Technol 150:109896. https://doi.org/10.1016/j.enzmictec.2021.109896

    Article  CAS  PubMed  Google Scholar 

  59. Sethi S, Kaith BS (2022) A review on chitosan-gelatin nanocomposites: synthesis, characterization and biomedical applications. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2022.105362

    Article  Google Scholar 

  60. Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK (2021) Employment of polysaccharides in enzyme immobilization. React Funct Polym 167:105005. https://doi.org/10.1016/j.reactfunctpolym.2021.105005

    Article  CAS  Google Scholar 

  61. Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym 152:104613. https://doi.org/10.1016/j.reactfunctpolym.2020.104613

    Article  CAS  Google Scholar 

  62. Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Virgen-Ortíz JJ, Gorines BC, Otero C, Fernandez-Lafuente R (2017) Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers: avoiding enzyme release from the support. Process Biochem 54:81–88. https://doi.org/10.1016/j.procbio.2016.12.018

    Article  CAS  Google Scholar 

  63. Guisan JM, Gloria FL, Javier RM, Daniel MG (2022) Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Curr Opin Green Sustain. https://doi.org/10.1016/j.cogsc.2022.100593

    Article  Google Scholar 

  64. Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R (2021) Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 52:107821. https://doi.org/10.1016/j.biotechadv.2021.107821

    Article  CAS  PubMed  Google Scholar 

  65. Morellon-Sterling R, Siar EH, Braham SA, de Andrades D, Pedroche J, del Carmen MM, Fernandez-Lafuente R (2021) Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. J Biotechnol 329:128–142. https://doi.org/10.1016/j.jbiotec.2021.02.005

    Article  CAS  PubMed  Google Scholar 

  66. Yi Y, Shi K, Ding S, Hu J, Zhang C, Mei J, Ying G (2023) A general strategy for protein affinity-ligand oriented-immobilization and screening for bioactive compounds. J Chromatogr. https://doi.org/10.1016/j.jchromb.2023.123591

    Article  Google Scholar 

  67. Gao X, Wei C, Qi H, Li C, Lu F, Qin HM (2023) Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Food Chem 401:134199. https://doi.org/10.1016/j.foodchem.2022.134199

    Article  CAS  PubMed  Google Scholar 

  68. Rueda N, dos Santos JC, Ortiz C, Barbosa O, Fernandez-Lafuente R, Torres R (2016) Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catal Today 259:107–118. https://doi.org/10.1016/j.cattod.2015.05.027

    Article  CAS  Google Scholar 

  69. Sikora A, Chełminiak-Dudkiewicz D, Siódmiak T, Tarczykowska A, Sroka WD, Ziegler-Borowska M, Marszałł MP (2016) Enantioselective acetylation of (R, S)-atenolol: the use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation. J Mol Catal B Enzym 134:43–50. https://doi.org/10.1016/j.molcatb.2016.09.017

    Article  CAS  Google Scholar 

  70. Saha K, Verma P, Sikder J, Chakraborty S, Curcio S (2019) Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renew Energy 133:66–76. https://doi.org/10.1016/j.renene.2018.10.014

    Article  CAS  Google Scholar 

  71. Ricardi NC, Arenas LT, Benvenutti EV, Hinrichs R, Flores EEE, Hertz PF, Costa TMH (2021) High performance biocatalyst based on β-d-galactosidase immobilized on mesoporous silica/titania/chitosan material. Food Chem 359:129890. https://doi.org/10.1016/j.foodchem.2021.129890

    Article  CAS  PubMed  Google Scholar 

  72. Bindu VU, Mohanan PV (2020) Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res 498:108185. https://doi.org/10.1016/j.carres.2020.108185

    Article  CAS  PubMed  Google Scholar 

  73. Moreira KDS, de Oliveira ALB, de Moura Júnior LS, de Sousa IG, Cavalcante ALG, Neto FS, Valério RBR, Chaves AVC, Fonseca TS, Cruz DMV, Lima GV, Oliveira GP, Souza CM, Fechine PBA, Mattos MC, Fonseca AM, dos Santos JC (2022) Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 177:223–244. https://doi.org/10.1016/j.cherd.2021.10.033

    Article  CAS  Google Scholar 

  74. Chen Z, Wang X, Chen Y, Xue Z, Guo Q, Ma Q, Chen H (2018) Preparation and characterization of a novel nanocomposite with double enzymes immobilized on magnetic Fe3O4-chitosan-sodium tripolyphosphate. Colloids Surf 169:280–288. https://doi.org/10.1016/j.colsurfb.2018.04.066

    Article  CAS  Google Scholar 

  75. Samuel VR, Rao KJ (2022) A review on label free biosensors. Biosens Bioelectron. https://doi.org/10.1016/j.biosx.2022.100216

    Article  Google Scholar 

  76. Vallinayagam S, Paladhi AG, Pal K, Kyzas GZ (2022) Multifunctional biosensor activities in food technology, microbes and toxins—a systematic mini review. Process Biochem. https://doi.org/10.1016/j.procbio.2022.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  77. Özkan BÇ, Aras TS, Turhan H, Ak M (2022) Highly stable and reproducible biosensor interface based on chitosan and 2, 5-Di (thienyl) pyrrole based conjugated polymer. Mater Chem Phys 288:126397. https://doi.org/10.1016/j.matchemphys.2022.126397

    Article  CAS  Google Scholar 

  78. Deswal R, Narwal V, Kumar P, Verma V, Dang AS, Pundir CS (2022) An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer. Sens Int 3:100174. https://doi.org/10.1016/j.sintl.2022.100174

    Article  Google Scholar 

  79. Cui HF, Zhang TT, Lv QY, Song X, Zhai XJ, Wang GG (2019) An acetylcholinesterase biosensor based on doping Au nanorod@ SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron 141:111452. https://doi.org/10.1016/j.bios.2019.111452

    Article  CAS  PubMed  Google Scholar 

  80. Filiz BC, Elalmis YB, Bektaş İS, Figen AK (2021) Fabrication of stable electrospun blended chitosan-poly (vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int J Biol Macromol 192:999–1012. https://doi.org/10.1016/j.ijbiomac.2021.10.048

    Article  CAS  Google Scholar 

  81. Gong J, Liu T, Song D, Zhang X, Zhang L (2009) One-step fabrication of three-dimensional porous calcium carbonate–chitosan composite film as the immobilization matrix of acetylcholinesterase and its biosensing on pesticide. Electrochem commun 11(10):1873–1876. https://doi.org/10.1016/j.elecom.2009.08.005

    Article  CAS  Google Scholar 

  82. Zhang L, Xu Z, Dong S (2006) Electrogenerated chemiluminescence biosensor based on Ru (bpy) 32+ and dehydrogenase immobilized in sol–gel/chitosan/poly (sodium 4-styrene sulfonate) composite material. Anal Chim Acta 575(1):52–56. https://doi.org/10.1016/j.aca.2006.05.069

    Article  CAS  PubMed  Google Scholar 

  83. Choi HS, Yang X, Liu G, Kim DS, Yang JH, Lee JH, Han SO, Lee J, Kim SW (2020) Development of Co-hemin MOF/chitosan composite based biosensor for rapid detection of lactose. J Taiwan Inst Chem E 113:1–7. https://doi.org/10.1016/j.jtice.2020.07.021

    Article  CAS  Google Scholar 

  84. Nasiri H, Baghban H, Teimuri-Mofrad R, Mokhtarzadeh A (2023) Graphitic carbon nitride/magnetic chitosan composite for rapid electrochemical detection of lactose. Int Dairy J 136:105489. https://doi.org/10.1016/j.idairyj.2022.105489

    Article  CAS  Google Scholar 

  85. Dai H, Chi Y, Wu X, Wang Y, Wei M, Chen G (2010) Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron 25(6):1414–1419. https://doi.org/10.1016/j.bios.2009.10.042

    Article  CAS  PubMed  Google Scholar 

  86. Nontipichet N, Khumngern S, Choosang J, Thavarungkul P, Kanatharana P, Numnuam A (2021) An enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan–gold nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes. Food Chem 364:130396. https://doi.org/10.1016/j.foodchem.2021.130396

    Article  CAS  PubMed  Google Scholar 

  87. Salvo-Comino C, Garcia-Hernandez C, Garcia-Cabezon C, Rodriguez-Mendez ML (2020) Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces. Bioelectrochemistry 132:107407. https://doi.org/10.1016/j.bioelechem.2019.107407

    Article  CAS  PubMed  Google Scholar 

  88. Li Y, Cao X, Qian X, Chen Y, Liu S (2012) Immobilization of laccase in N-doped carbon hollow spheres/chitosan composite film for electrochemical detection of kraft lignin. J Electroanal Chem 686:7–11. https://doi.org/10.1016/j.jelechem.2012.09.013

    Article  CAS  Google Scholar 

  89. Xu X, Guo M, Lu P, Wang R (2010) Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix. Mater Sci Eng C 30(5):722–729. https://doi.org/10.1016/j.msec.2010.03.006

    Article  CAS  Google Scholar 

  90. Ghica ME, Pauliukaite R, Fatibello-Filho O, Brett CM (2009) Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sens Actuators B Chem 142(1):308–315. https://doi.org/10.1016/j.snb.2009.08.012

    Article  CAS  Google Scholar 

  91. Batra B, Pundir CS (2013) An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 47:496–501. https://doi.org/10.1016/j.bios.2013.03.063

    Article  CAS  PubMed  Google Scholar 

  92. Deepapriya S, Rodney JD, John JF, Joshi S, Udayashankar NK, Devi SL, Das SJ (2023) A novel effective immobilization of glucose oxidase on Ni0. 25Zn0. 25Cu0. 25Co0. 25La0. 06Fe1. 94O4–chitosan nanocomposite as an enzymatic glucose biosensor. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2023.110822

    Article  Google Scholar 

  93. Gulotta FA, Montenegro MA, Diaz LV, Badano JA, Ferreyra NF, Zanini VIP (2023) Chitosan-based Maillard products for enzyme immobilization in multilayers structure: its application in electrochemical sensing. Microchem J 190:108689. https://doi.org/10.1016/j.microc.2023.108689

    Article  CAS  Google Scholar 

  94. Moharramzadeh F, Zarghami V, Mazaheri M, Simchi A (2022) Concurrent electrophoretic deposition of enzyme-laden chitosan/graphene oxide composite films for biosensing. Mater Lett 308:131228. https://doi.org/10.1016/j.matlet.2021.131228

    Article  CAS  Google Scholar 

  95. Sheng Q, Luo K, Li L, Zheng J (2009) Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application. Bioelectrochemistry 74(2):246–253. https://doi.org/10.1016/j.bioelechem.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  96. Khun K, Ibupoto ZH, Lu J, AlSalhi MS, Atif M, Ansari AA, Willander M (2012) Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sens Actuators B Chem 173:698–703. https://doi.org/10.1016/j.snb.2012.07.074

    Article  CAS  Google Scholar 

  97. Susanto H, Samsudin AM, Rokhati N, Widiasa IN (2013) Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzyme Microb Tech 52(6–7):386–392. https://doi.org/10.1016/j.enzmictec.2013.02.005

    Article  CAS  Google Scholar 

  98. Bagal-Kestwal DR, Kestwal RM, Hsieh WT, Chiang BH (2014) Chitosan–guar gum–silver nanoparticles hybrid matrix with immobilized enzymes for fabrication of beta-glucan and glucose sensing photometric flow injection system. J Pharmaceut Biomed 88:571–578. https://doi.org/10.1016/j.jpba.2013.09.011

    Article  CAS  Google Scholar 

  99. Paik ES, Kim YR, Hong HG (2018) Amperometric glucose biosensor utilizing zinc oxide-chitosan-glucose oxidase hybrid composite films on electrodeposited Pt-Fe (III). Anal Sci 34(11):1271–1276. https://doi.org/10.2116/analsci.18P054

    Article  CAS  PubMed  Google Scholar 

  100. Sahin S, Ozmen I, Bastemur GY, Ozkorucuklu SP (2019) Development of voltammetric glucose-6-phosphate biosensors based on the immobilization of glucose-6-phosphate dehydrogenase on polypyrrole-and chitosan-coated Fe3O4 nanoparticles/polypyrrole nanocomposite films. Appl Biochem 188(4):1145–1157. https://doi.org/10.1007/s12010-019-02979-2

    Article  CAS  Google Scholar 

  101. Chen S, Yuan R, Chai Y, Yin B, Li W, Min L (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core–shell organosilica@ chitosan nanospheres and multiwall carbon nanotubes composite. Electrochim Acta 54(11):3039–3046. https://doi.org/10.1016/j.molcatb.2008.05.007

    Article  CAS  Google Scholar 

  102. Bagal-Kestwal D, Kestwal RM, Chiang BH, Karve MS (2011) Development of dip-strip sucrose sensors: application of plant invertase immobilized in chitosan–guar gum, gelatin and poly-acrylamide films. Sens Actuators B Chem 160(1):1026–1033. https://doi.org/10.1016/j.snb.2011.09.021

    Article  CAS  Google Scholar 

  103. Devi R, Pundir CS (2014) Construction and application of an amperometric uric acid biosensor based on covalent immobilization of uricase on iron oxide nanoparticles/chitosan-g-polyaniline composite film electrodeposited on Pt electrode. Sens Actuators B Chem 193:608–615. https://doi.org/10.1016/j.snb.2013.12.010

    Article  CAS  Google Scholar 

  104. Jirakunakorn R, Khumngern S, Choosang J, Thavarungkul P, Kanatharana P, Numnuam A (2020) Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel. Microchem J 154:104624. https://doi.org/10.1016/j.microc.2020.104624

    Article  CAS  Google Scholar 

  105. Thanh CT, Binh NH, Duoc PND, Thu VT, Van Trinh P, Anh NN, Tu NV, Tuyen NV, Quynh NV, Tu VC, Thao BTP, Thang PD, Abe H, Van Chuc N (2021) Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection. B Environ Contam Toxicol 106(6):1017–1023. https://doi.org/10.1007/s00128-021-03179-7

    Article  CAS  Google Scholar 

  106. Wang B, Ji X, Zhao H, Wang N, Li X, Ni R, Liu Y (2014) An amperometric β-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue–chitosan and gold nanoparticles–chitosan nanocomposite films. Biosens Bioelectron 55:113–119. https://doi.org/10.1016/j.bios.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  107. Liu Z, Wang K, Peng X, Zhang L (2022) Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2021.110979

    Article  Google Scholar 

  108. Dutta PK (Ed.) (2016) Chitin and chitosan for regenerative medicine New Delhi, India. pp 389. https://doi.org/10.1007/978-81-322-2511-9

  109. Soares AM, Gonçalves LM, Ferreira RD, de Souza JM, Fangueiro R, Alves MM, Carvalho FA, Mendes AN, Cantanhêde W (2020) Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications. Carbohydr Polym 243:116498. https://doi.org/10.1016/j.carbpol.2020.116498

    Article  CAS  PubMed  Google Scholar 

  110. Song J, Zhang C, Kong S, Liu F, Hu W, Su F, Li S (2022) Novel chitosan based metal-organic polyhedrons/enzyme hybrid hydrogel with antibacterial activity to promote wound healing. Carbohydr Polym 291:119522. https://doi.org/10.1016/j.carbpol.2022.119522

    Article  CAS  PubMed  Google Scholar 

  111. He S, Wu X, Ma B, Xu Y (2021) High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin. Bioproc Biosyst Eng 44(10):2193–2204. https://doi.org/10.1007/s00449-021-02595-7

    Article  CAS  Google Scholar 

  112. Park JM, Kim M, Park HS, Jang A, Min J, Kim YH (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43. https://doi.org/10.1016/j.ijbiomac.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  113. Lakouraj MM, Maashsani A, Norouzian RS, Mohadjerani M (2015) Immobilization of pepsin on chitosan magnetic nanoparticles and its application in deacetylation of amides. J Carbohydr Chem 34(2):103–119. https://doi.org/10.1080/07328303.2015.1009534

    Article  CAS  Google Scholar 

  114. Saini M, Gupta R (2022) Fabrication of chitosan-coated magnetite nanobiocatalyst with Bacillus atrophaeus γ-glutamyl transpeptidase and its application to the synthesis of a bioactive peptide SCV-07. Process Biochem 122:238–249. https://doi.org/10.1016/j.procbio.2022.08.034

    Article  CAS  Google Scholar 

  115. Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M (2022) Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocoll 124:107328. https://doi.org/10.1016/j.foodhyd.2021.107328

    Article  CAS  Google Scholar 

  116. Oladzadabbasabadi N, Nafchi AM, Ariffin F, Wijekoon MJO, Al-Hassan AA, Dheyab MA, Ghasemlou M (2022) Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 277:118876. https://doi.org/10.1016/j.carbpol.2021.118876

    Article  CAS  PubMed  Google Scholar 

  117. Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X (2017) Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT 80:348–354. https://doi.org/10.1016/j.lwt.2017.02.040

    Article  CAS  Google Scholar 

  118. Klein MP, Hackenhaar CR, Lorenzoni AS, Rodrigues RC, Costa TM, Ninow JL, Hertz PF (2016) Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr Polym 137:184–190. https://doi.org/10.1016/j.carbpol.2015.10.069

    Article  CAS  PubMed  Google Scholar 

  119. Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2020) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18(2):315–323. https://doi.org/10.1007/s10311-019-00942-5

    Article  CAS  Google Scholar 

  120. Çalcı E, Önal S (2022) Comparative affinity immobilization of α-galactosidase on chitosan functionalized with Concanavalin A and its useability for the hydrolysis of raffinose. React Funct Polym 172:105181. https://doi.org/10.1016/j.reactfunctpolym.2022.105181

    Article  CAS  Google Scholar 

  121. Dal Magro L, de Moura KS, Backes BE, de Menezes EW, Benvenutti EV, Nicolodi S, Klein MP, Fernandez-Lafuente R, Rodrigues RC (2019) Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnol Rep 24:e00373. https://doi.org/10.1016/j.btre.2019.e00373

    Article  Google Scholar 

  122. Li R, Fu G, Liu C, McClements DJ, Wan Y, Wang S, Liu T (2018) Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 114:1134–1143. https://doi.org/10.1016/j.ijbiomac.2018.03.077

    Article  CAS  PubMed  Google Scholar 

  123. Yang L, Liu X, Zhou N, Tian Y (2019) Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads. J Biosci Bioeng 127(1):16–22. https://doi.org/10.1016/j.jbiosc.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  124. Yang J, Xu P, Long L, Ding S (2021) Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochem 100:1–9. https://doi.org/10.1016/j.procbio.2020.09.024

    Article  CAS  Google Scholar 

  125. Wang H, Li S, Li J, Zhong L, Cheng H, Ma Q (2020) Immobilized polyphenol oxidase: preparation, optimization and oxidation of phenolic compounds. Int J Biol Macromol 160:233–244. https://doi.org/10.1016/j.ijbiomac.2020.05.079

    Article  CAS  PubMed  Google Scholar 

  126. Azevedo RD, Amaral IP, Ferreira AC, Espósito TS, Bezerra RS (2018) Use of fish trypsin immobilized onto magnetic-chitosan composite as a new tool to detect antinutrients in aquafeeds. Food Chem 257:302–309. https://doi.org/10.1016/j.foodchem.2018.03.034

    Article  CAS  PubMed  Google Scholar 

  127. Yassin MA, Shindia A, Labib M, Soud M, El-Sayed AS (2022) Thermostable chitosan-L-Asparaginase conjugate from Aspergillus fumigatus is a novel structurally stable composite for abolishing acrylamide formation in French fried potatoes. LWT 162:113494. https://doi.org/10.1016/j.lwt.2022.113494

    Article  CAS  Google Scholar 

  128. Sánchez-Ramírez J, Martínez-Hernández JL, López-Campos RG, Segura-Ceniceros EP, Saade H, Ramos-González R, Neira-Velázquez MG, Medina-Morales MA, Aguilar CN, Ilyina A (2018) Laccase validation as pretreatment of agave waste prior to saccharification: free and immobilized in superparamagnetic nanoparticles enzyme preparations. Waste Biomass Valoriz 9(2):223–234. https://doi.org/10.1007/s12649-016-9774-z

    Article  CAS  Google Scholar 

  129. Cacciotti I, Lombardelli C, Benucci I, Esti M (2019) Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J Mater Res Technol 8(4):3644–3652. https://doi.org/10.1016/j.jmrt.2019.06.002

    Article  CAS  Google Scholar 

  130. Kamal S, Rehman S, Bibi I, Akhter N, Amir R, Alsanie WF, Iqbal HM (2022) Graphene oxide/chitosan composites as novel support to provide high yield and stable formulations of pectinase for industrial applications. Int J Biol Macromol 220:683–691. https://doi.org/10.1016/j.ijbiomac.2022.08.101

    Article  CAS  PubMed  Google Scholar 

  131. Ji S, Liu W, Su S, Gan C, Jia C (2021) Chitosan derivative functionalized carbon nanotubes as carriers for enzyme immobilization to improve synthetic efficiency of ethyl caproate. LWT 149:111897. https://doi.org/10.1016/j.lwt.2021.111897

    Article  CAS  Google Scholar 

  132. Wang Q, Chen W, Ma C, Chen S, Liu X, Liu F (2022) Enzymatic synthesis of sodium caseinate-EGCG-carboxymethyl chitosan ternary film: Structure, physical properties, antioxidant and antibacterial properties. Int J Biol Macromol 222:509–520. https://doi.org/10.1016/j.ijbiomac.2022.09.138

    Article  CAS  PubMed  Google Scholar 

  133. Ricardi NC, de Menezes EW, Benvenutti EV, da Natividade SJ, Hackenhaar CR, Hertz PF, Costa TMH (2018) Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chem 246:343–350. https://doi.org/10.1016/j.foodchem.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  134. Nguyen VD, Styevkó G, Madaras E, Haktanirlar G, Tran AT, Bujna E, Dam MS, Nguyen QD (2019) Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 84:30–38. https://doi.org/10.1016/j.procbio.2019.05.021

    Article  CAS  Google Scholar 

  135. Çelik A, Dinçer A, Aydemir T (2016) Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int J Biol Macromol 89:406–414. https://doi.org/10.1016/j.ijbiomac.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  136. Haghju S, Bari MR, Khaled-Abad MA (2018) Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydr Polym 200:137–143. https://doi.org/10.1016/j.carbpol.2018.07.096

    Article  CAS  PubMed  Google Scholar 

  137. Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM (2022) Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arab J Chem 15(2):103543. https://doi.org/10.1016/j.arabjc.2021.103543

    Article  CAS  Google Scholar 

  138. Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM (2022) Sustainable adsorptive removal of antibiotic residues by chitosan composites: an insight into current developments and future recommendations. Arab J Chem. https://doi.org/10.1016/j.arabjc.2022.103743

    Article  PubMed  PubMed Central  Google Scholar 

  139. Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM (2021) Chitosan based adsorbents for the removal of phosphate and nitrate: a critical review. Carbohydr Polym 274:118671. https://doi.org/10.1016/j.carbpol.2021.118671

    Article  CAS  PubMed  Google Scholar 

  140. Girelli AM, Quattrocchi L, Scuto FR (2021) Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. J Biotechnol 337:8–17. https://doi.org/10.1016/j.jbiotec.2021.06.010

    Article  CAS  PubMed  Google Scholar 

  141. Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B (2020) Laccase-conjugated thiolated chitosan- Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 150:871–884. https://doi.org/10.1016/j.ijbiomac.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  142. Suri A, Khandegar V, Kaur PJ (2021) Ofloxacin exclusion using novel HRP immobilized chitosan cross-link with graphene-oxide nanocomposite. Groundw Sustain Dev 12:100515. https://doi.org/10.1016/j.gsd.2020.100515

    Article  Google Scholar 

  143. Bilal M, Rasheed T, Zhao Y, Iqbal HM (2019) Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 124:742–749. https://doi.org/10.1016/j.ijbiomac.2018.11.220

    Article  CAS  PubMed  Google Scholar 

  144. Zhai R, Zhang B, Wan Y, Li C, Wang J, Liu J (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309. https://doi.org/10.1016/j.cej.2012.10.073

    Article  CAS  Google Scholar 

  145. Wang YJ, Xu KZ, Ma H, Liao XR, Guo G, Tian F, Guan ZB (2020) Recombinant horseradish peroxidase C1A immobilized on hydrogel matrix for dye decolorization and its mechanism on acid blue 129 decolorization. Appl Biochem 192(3):861–880. https://doi.org/10.1007/s12010-020-03377-9

    Article  CAS  Google Scholar 

  146. Hürmüzlü R, Okur M, Saraçoğlu N (2021) Immobilization of Trametes versicolor laccase on chitosan/halloysite as a biocatalyst in the Remazol Red RR dye. Int J Biol Macromol 192:331–341. https://doi.org/10.1016/j.ijbiomac.2021.09.213

    Article  CAS  PubMed  Google Scholar 

  147. Girelli AM, Quattrocchi L, Scuto FR (2020) Silica-chitosan hybrid support for laccase immobilization. J Biotechnol 318:45–50. https://doi.org/10.1016/j.jbiotec.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  148. Deng J, Wang H, Zhan H, Wu C, Huang Y, Yang B, Mosa A, Ling W (2022) Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. Chemosphere 301:134753. https://doi.org/10.1016/j.chemosphere.2022.134753

    Article  CAS  PubMed  Google Scholar 

  149. Mehandia S, Ahmad S, Sharma SC, Arya SK (2022) Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: an ecofriendly approach. J Water Process Eng 47:102662. https://doi.org/10.1016/j.jwpe.2022.102662

    Article  Google Scholar 

  150. Nadaroglu H, Mosber G, Gungor AA, Adıguzel G, Adiguzel A (2019) Biodegradation of some azo dyes from wastewater with laccase from Weissella viridescens LB37 immobilized on magnetic chitosan nanoparticles. J Water Process Eng 31:100866. https://doi.org/10.1016/j.jwpe.2019.100866

    Article  Google Scholar 

  151. Leontieș AR, Răducan A, Culiță DC, Alexandrescu E, Moroșan A, Mihaiescu DE, Aricov L (2022) Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation. Chem Eng J 439:135654. https://doi.org/10.1016/j.cej.2022.135654

    Article  CAS  Google Scholar 

  152. Zdarta J, Staszak M, Jankowska K, Kaźmierczak K, Degórska O, Nguyen LN, Gawrońska EK, Pinelo M, Jesionowski T (2020) The response surface methodology for optimization of tyrosinase immobilization onto electrospun polycaprolactone–chitosan fibers for use in bisphenol A removal. Int J Biol Macromol 165:2049–2059. https://doi.org/10.1016/j.ijbiomac.2020.10.081

    Article  CAS  PubMed  Google Scholar 

  153. Xiang X, Suo H, Xu C, Hu Y (2018) Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf 165:262–269. https://doi.org/10.1016/j.colsurfb.2018.02.033

    Article  CAS  Google Scholar 

  154. Zhang K, Yang W, Liu Y, Zhang K, Chen Y, Yin X (2020) Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 1220:128769. https://doi.org/10.1016/j.molstruc.2020.128769

    Article  CAS  Google Scholar 

  155. Qiu X, Wang S, Miao S, Suo H, Xu H, Hu Y (2021) Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J Hazard 401:123353. https://doi.org/10.1016/j.jhazmat.2020.123353

    Article  CAS  Google Scholar 

  156. Olshansky Y, Masaphy S, Root RA, Rytwo G (2018) Immobilization of Rhus vernicifera laccase on sepiolite; effect of chitosan and copper modification on laccase adsorption and activity. Appl Clay Sci 152:143–147. https://doi.org/10.1016/j.clay.2017.11.006

    Article  CAS  Google Scholar 

  157. Lin J, Fan L, Miao R, Le X, Chen S, Zhou X (2015) Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres. Int J Biol Macromol 78:1–8. https://doi.org/10.1016/j.ijbiomac.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  158. Mehandia S, Sharma SC, Arya SK (2020) Immobilization of laccase on chitosan-clay composite beads to improve its catalytic efficiency to degrade industrial dyes. Materials 25:101513. https://doi.org/10.1016/j.mtcomm.2020.101513

    Article  CAS  Google Scholar 

  159. Doğaç YI, Deveci İ, Teke M, Mercimek B (2014) TiO2 beads and TiO2-chitosan beads for urease immobilization. Mater Sci Eng C 42:429–435. https://doi.org/10.1016/j.msec.2014.05.058

    Article  CAS  Google Scholar 

  160. Gali KK, Soundararajan N, Katiyar V, Sivaprakasam S (2021) Electrospun chitosan coated polylactic acid nanofiber: a novel immobilization matrix for α–amylase and its application in hydrolysis of cassava fibrous waste. J Mater Res Technol 13:686–699. https://doi.org/10.1016/j.jmrt.2021.05.001

    Article  CAS  Google Scholar 

  161. Yu J, Wang D, Geetha N, Khawar KM, Jogaiah S, Mujtaba M (2021) Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review. Carbohydr Polym 261:117904. https://doi.org/10.1016/j.carbpol.2021.117904

    Article  CAS  PubMed  Google Scholar 

  162. Helmi F, Helmi M, Hemmati A (2022) Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study. Renew Energy 189:881–898. https://doi.org/10.1016/j.renene.2022.02.123

    Article  CAS  Google Scholar 

  163. Prajapati D, Pal A, Dimkpa C, Singh U, Devi KA, Choudhary JL, Saharan V (2022) Chitosan nanomaterials: a prelim of next-generation fertilizers; existing and future prospects. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119356

    Article  PubMed  Google Scholar 

  164. Silvestre WP, Baldasso C, Tessaro IC (2020) Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr Polym 247:116676. https://doi.org/10.1016/j.carbpol.2020.116676

    Article  CAS  PubMed  Google Scholar 

  165. Long J, Zhang B, Li X, Zhan X, Xu X, Xie Z, Jin Z (2018) Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/ Fe3O4 nanoparticles. Food Chem 239:276–286. https://doi.org/10.1016/j.foodchem.2017.06.117

    Article  CAS  PubMed  Google Scholar 

  166. Javid A, Amiri H, Kafrani AT, Rismani-Yazdi H (2022) Post-hydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: a key stage of butanol production from waste textile. Int J Biol Macromol 207:324–332. https://doi.org/10.1016/j.ijbiomac.2022.03.013

    Article  CAS  PubMed  Google Scholar 

  167. Kuo CH, Liu YC, Chang CMJ, Chen JH, Chang C, Shieh CJ (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87(4):2538–2545. https://doi.org/10.1016/j.carbpol.2011.11.026

    Article  CAS  Google Scholar 

  168. Liu X, Dong X, Zhong S, Xia J, He J, Deng Y, Xu J (2022) One-step solid-state fermentation for efficient erythritol production from the simultaneous saccharified crop wastes by incorporating immobilized cellulase. Ind Crops Prod 176:114351. https://doi.org/10.1016/j.indcrop.2021.114351

    Article  CAS  Google Scholar 

  169. Kim DS, Choi HS, Yang X, Yang JH, Lee JH, Yoo HY, Lee J, Park C, Kim SW (2020) Improvement of power generation of enzyme fuel cell by novel GO/Co/chitosan electrodeposition. J Ind Eng Chem 81:108–114. https://doi.org/10.1016/j.jiec.2019.08.060

    Article  CAS  Google Scholar 

  170. Yang JH, Kim HR, Lee JH, Jin JH, Lee HU, Kim SW (2021) Electrochemical properties of enzyme electrode covalently immobilized on a graphite oxide/cobalt hydroxide/chitosan composite mediator for biofuel cells. Int Int J Hydrogen Energy 46(4):3251–3258. https://doi.org/10.1016/j.ijhydene.2020.03.084

    Article  CAS  Google Scholar 

  171. Haque SU, Nasar A, Inamuddin Rahman MM (2020) Applications of chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) conducting composite electrode for energy generation in glucose biofuel cell. Sci Rep 10(1):10428. https://doi.org/10.1038/s41598-020-67253-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hosseini SM, Kim SM, Sayed M, Younesi H, Bahramifar N, Park JH, Pyo SH (2019) Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Bio Chem Eng J 143:141–150. https://doi.org/10.1016/j.bej.2018.12.022

    Article  CAS  Google Scholar 

  173. Rahman INA, Wahab RA, Mahat NA, Jamalis J, Huri MAM, Kurniawan C (2019) Ternary blended chitosan/chitin Fe3O4 nanosupport for lipase activation and stabilization. Arab J Sci Eng 44(7):6327–6337. https://doi.org/10.1007/s13369-019-03771-4

    Article  CAS  Google Scholar 

  174. Tang Y, Wang P, Zeng H, Rui Z (2023) Construction of porous chitosan macrospheres via dual pore-forming strategy as host for alkaline protease immobilization with high activity and stability. Carbohydr Polym 305:120476. https://doi.org/10.1016/j.carbpol.2022.120476

    Article  CAS  PubMed  Google Scholar 

  175. İnanan T (2019) Chitosan Co-polymeric nanostructures for catalase immobilization. React Funct Polym 135:94–102. https://doi.org/10.1016/j.reactfunctpolym.2018.12.013

    Article  CAS  Google Scholar 

  176. Mo H, Qiu J, Yang C, Zang L, Sakai E, Chen J (2020) Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme Microb Tech 138:109561. https://doi.org/10.1016/j.enzmictec.2020.109561

    Article  CAS  Google Scholar 

  177. Mo H, Qiu J, Yang C, Zang L, Sakai E, Chen J (2020) Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme Microb Technol 138:109561. https://doi.org/10.1016/j.enzmictec.2020.109561

    Article  CAS  PubMed  Google Scholar 

  178. Zang L, Qiao X, Hu L, Yang C, Liu Q, Wei C, Qiu J, Mo H, Song G, Yang J, Liu C (2018) Preparation and evaluation of coal fly ash/chitosan composites as magnetic supports for highly efficient cellulase immobilization and cellulose bioconversion. Polymers 10(5):523. https://doi.org/10.3390/polym10050523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu Y, Cai Z, Ma M, Sheng L, Huang X (2020) Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydr Polym 242:116387. https://doi.org/10.1016/j.carbpol.2020.116387

    Article  CAS  PubMed  Google Scholar 

  180. Bai Y, Wu W (2022) The neutral protease immobilization: physical characterization of sodium alginate-chitosan gel beads. Appl Biochem 194(5):2269–2283. https://doi.org/10.1007/s12010-021-03773-9

    Article  CAS  Google Scholar 

  181. Zhu Z, Wang J, Munir A, Zhou HS (2011) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on bamboo shaped carbon nanotubes/chitosan matrix. Colloids Surf A Physicochem Eng Asp 385(1–3):91–94. https://doi.org/10.1016/j.colsurfa.2011.05.047

    Article  CAS  Google Scholar 

  182. Ke P, Zeng D, Xu K, Cui J, Li X, Wang G (2020) Synthesis and characterization of a novel magnetic chitosan microsphere for lactase immobilization. Colloids Surf A Physicochem Eng Asp 606:125522. https://doi.org/10.1016/j.colsurfa.2020.125522

    Article  CAS  Google Scholar 

  183. Costa-Silva TA, Carvalho AKF, Souza CRF, Freitas L, De Castro HF, Oliveira WP (2022) Highly effective Candida rugosa lipase immobilization on renewable carriers: Integrated drying and immobilization process to improve enzyme performance. Chem Eng Res Des 183:41–55. https://doi.org/10.1016/j.cherd.2022.04.026

    Article  CAS  Google Scholar 

  184. Rashid R, Anwar Z, Zafar M, Rashid T, Butt I (2018) Chitosan-alginate immobilized lipase based catalytic constructs: development, characterization and potential applications. Int J Biol Macromol 119:992–1001. https://doi.org/10.1016/j.ijbiomac.2018.07.192

    Article  CAS  PubMed  Google Scholar 

  185. Zhou X, Zhang W, Zhao L, Gao S, Liu T, Yu D (2023) Immobilization of lipase in chitosan-mesoporous silica material and pore size adjustment. Int J Biol Macromol 235:123789. https://doi.org/10.1016/j.ijbiomac.2023.123789

    Article  CAS  PubMed  Google Scholar 

  186. Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY (2019) Fabrication of nanobiocatalyst using encapsulated laccase onto chitosan-nanobiochar composite. Int J Biol Macromol 124:530–536. https://doi.org/10.1016/j.ijbiomac.2018.11.234

    Article  CAS  PubMed  Google Scholar 

  187. Cerón A, Costa S, Imbernon R, de Queiroz R, de Castro J, Ferraz H, Oliveira R, Costa S (2023) Study of stability, kinetic parameters and release of lysozyme immobilized on chitosan microspheres by crosslinking and covalent attachment for cotton fabric functionalization. Process Biochem 128:116–125. https://doi.org/10.1016/j.procbio.2023.02.023

    Article  CAS  Google Scholar 

  188. Almulaiky YQ, Khalil NM, Algamal Y, Al-Gheethi A, Aissa A, Al-Maaqar SM, Himmed M, Bilal M, Alkabli J, El-Shishtawy RM (2022) Optimization of biocatalytic steps via response surface methodology to produce immobilized peroxidase on chitosan-decorated AZT composites for enhanced reusability and storage stability. Catal Lett. https://doi.org/10.1007/s10562-022-04185-y

    Article  Google Scholar 

  189. Qiu X, Xiang X, Liu T, Huang H, Hu Y (2020) Fabrication of an organic–inorganic nanocomposite carrier for enzyme immobilization based on metal–organic coordination. Process Biochem 95:47–54. https://doi.org/10.1016/j.procbio.2020.05.007

    Article  CAS  Google Scholar 

  190. Baghban A, Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF (2017) Covalently bonded pancreatic lipase onto the dithiocarbamate/chitosan-based magnetite: stepwise fabrication of Fe3O4@ CS/NHCS-Lip as a novel and promising nanobiocatalyst. Int J Biol Macromol 103:1194–1200. https://doi.org/10.1016/j.ijbiomac.2017.05.159

    Article  CAS  PubMed  Google Scholar 

  191. Suo H, Gao Z, Xu L, Xu C, Yu D, Xiang X, Huang H, Hu Y (2019) Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater Sci Eng C 96:356–364. https://doi.org/10.1016/j.msec.2018.11.041

    Article  CAS  Google Scholar 

  192. Aggarwal S, Ikram S (2022) Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: stability kinetic studies. Int J Biol Macromol 207:205–221. https://doi.org/10.1016/j.ijbiomac.2022.03.014

    Article  CAS  PubMed  Google Scholar 

  193. Bracco LF, Levin GJ, Urtasun N, del Cañizo AAN, Wolman FJ, Miranda MV, Cascone O (2019) Covalent immobilization of soybean seed hull urease on chitosan mini-spheres and the impact on their properties. Biocatal Agric Biotechnol 18:101093. https://doi.org/10.1016/j.bcab.2019.101093

    Article  Google Scholar 

  194. Li GY, Li YJ, Huang KL, Zhong M (2010) Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae. J Magn Magn Mater 322(24):3862–3868. https://doi.org/10.1016/j.jmmm.2010.08.008

    Article  CAS  Google Scholar 

  195. Abdella MA, El-Sherbiny GM, El-Shamy AR, Atalla SM, Ahmed SA (2020) Statistical optimization of chemical modification of chitosan-magnetic nano-particles beads to promote Bacillus subtilis MK1 α-amylase immobilization and its application. Bull Natl Res Cent 44(1):1–13. https://doi.org/10.1186/s42269-020-00301-3

    Article  Google Scholar 

  196. Unniganapathi BV, Mohanan Puzhavoorparambil V (2022) Development of PAMAM dendrimer-modified magnetic chitosan: a novel platform for α-amylase immobilization. Polym Bull 79(10):9025–9042. https://doi.org/10.1007/s00289-021-03945-x

    Article  CAS  Google Scholar 

  197. Ahmed SA, Abdella MA, El-Sherbiny GM, Ibrahim AM, El-Shamy AR, Atalla SM, Hassan ME (2020) Catalytic, kinetic and thermal properties of free and immobilized Bacillus subtilis-MK1 α-amylase on chitosan-magnetic nanoparticles. Biotechnol Rep 26:e00443. https://doi.org/10.1016/j.btre.2020.e00443

    Article  Google Scholar 

  198. Liu DM, Chen J, Shi YP (2017) α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol 105:308–316. https://doi.org/10.1016/j.ijbiomac.2017.07.045

    Article  CAS  PubMed  Google Scholar 

  199. Wahba MI (2023) Glutaraldehyde-copper gelled chitosan beads: characterization and utilization as covalent immobilizers. Biocatal Agric Biotechnol 50:102668. https://doi.org/10.1016/j.bcab.2023.102668

    Article  CAS  Google Scholar 

  200. Pospiskova K, Safarik I (2013) Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohydr Polym 96(2):545–548. https://doi.org/10.1016/j.carbpol.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  201. Chang MY, Juang RS (2007) Use of chitosan–clay composite as immobilization support for improved activity and stability of β-glucosidase. BioChem Eng J 35(1):93–98. https://doi.org/10.1016/j.bej.2007.01.003

    Article  CAS  Google Scholar 

  202. Iqbal M, Deng Y, Chen Q, Yang C, Zhu Y, Chen Z, Wang J, Hu K, He G, Li D (2022) The effect of nano-calcium carbonate on β-glucosidase immobilized by alginate and chitosan. Green Process Synth 3(3):265–271. https://doi.org/10.1016/j.gresc.2022.03.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by fund of Natural Fund project of Gansu Province (21JR11RA068) and Industrial Support Plan Project of Gansu Province colleges and universities, No. 2020C-38.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by YB, ZXJ, RM, XWW, JL, and WTH. The first draft of the manuscript was written by ZXJ and conceptualization, supervision, writing—review and editing by YB.

Corresponding author

Correspondence to Yuan Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The research does not deal with human nor animal data.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Jing, Z., Ma, R. et al. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 46, 1539–1567 (2023). https://doi.org/10.1007/s00449-023-02914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02914-0

Keywords

Navigation